Embedded System Design and Synthesis

Robert Dick

http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan

Realtime systems Scheduling Overview of real-time and embedded operating systems dded application/OS time, power, and energy estimation Homework

Types of reliability

- Algorithm correctness: Does the specification have the desired properties?
- Robustness in the presence of transient faults: Can the system continue to operate correctly despite temporary errors?
- Robustness in the presence of permanent faults: Can the system continue to operate correctly in the presence of permanent errors?

Embedded System Design and Synth

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults
Conventional software testing	5	Model checking	
		 Use finite state system represe 	ntation

- Implement and test
- Number of tests bounded but number of inputs huge
- Imperfect coverage

- Use exhaustive state space exploration to guarantee desired properties hold for all possible paths
- Guarantees properties
- Difficulty with variables that can take on many values
 Symbolic techniques can improve this
- Difficulty with large number of processes

Overview of real-time and embedded operating system Overview of real-time and embedded operating system

propriate responses to transient faults propriate responses to permanent faults

Critical barriers to use

- For simple systems, manual proofs possible
- For very complex systems, state space exploration intractable
- May require new, more formal, specification language

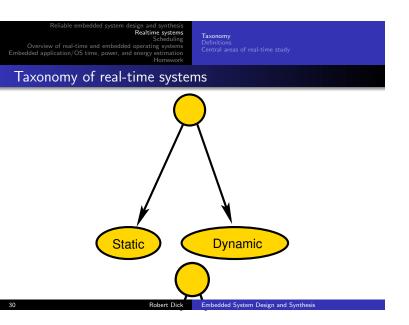
Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation gorithm correctness propriate responses to transient faults propriate responses to permanent faults

Overcoming barriers to use

- Automatic abstraction techniques permitting use on more complex systems
 - Difficult problem
- Target moderate-complexity systems where reliability is important
 - Medical devices
 - Transportation devices
 - Electronic commerce applications
- Give users a high-level language that is actually easier to use than their current language, and provide a path to a language used in existing model checkers

Reliable embedded system design and synthesis Realitime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Cross-talk	Reliable embedded system design and synthesis Realiture systems Scheduling Algorithm correctness Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults Particle impact
• Shielding	 Temporal redundancy Structural redundancy
• Bus encoding	Voltage control
10 Robert Dick Embedded System Design and Synthesis Reliable embedded system design and synthesis Realtime systems Realtime s	11 Robert Dick Embedded System Design and Synthesis Reliable embedded system design and synthesis Realtime systems Almeinian expectatory
Algorithm correctness Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Random background offset charge	Coverview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Homework Homewor
 Improvements to fabrication Temporal redundancy Structural redundancy 	Preemptive throttlingGlobal planning
12 Robert Dick Embedded System Design and Synthesis	13 Robert Dick Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Hornework	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework
Checkpointing: a tool for robustness in the presence of transient faults	Electromigration
 Periodically store system state On fault detection, roll back to known-good state Should system-wide or incremental, as-needed restores be used? When should checkpoints be taken? 	 Reduce temperature Reduce current Spatial redundancy

Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	rrectness esponses to transient faults esponses to permanent faults	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults
Manufacturing defects		Example lifetime failure awar	e synthesis flow
• Spatial redundancy			hesis. In <i>Proc. Int. Conf.</i> System Synthesis, pages 239–244, d spatial redundancy to increase amount of time an MPSoC will ce of component faults, before its e designer-specified constraint or it
17 Robert Dick Embedded Sy	rstem Design and Synthesis	18 Robert Dick	Embedded System Design and Synthesis
	esponses to transient faults esponses to permanent faults	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Reliability optimization flow	Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults
AMD K6-2E+ Power PC Power PC Solution I	PowerPC (RE) Power Power PC Solution II	Process core and Process core	Placebolity Flooplanning Adaptive lat schoolding Thermal endpois Thermal endpois Reliability Thermal endpois Reliability Reliab
19 Robert Dick Embedded Sy	rstem Design and Synthesis	20 Robert Dick	Embedded System Design and Synthesis
	aken Okagn and Synchola		Lindeded Jysein Desgr and Jynaieso
Reliable embedded system design and synthesis Realitime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation	rectness esponses to transient faults esponses to permanent faults	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation	Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults
Lifetime reliability optimization chall	enges	Importance of understanding	fault class

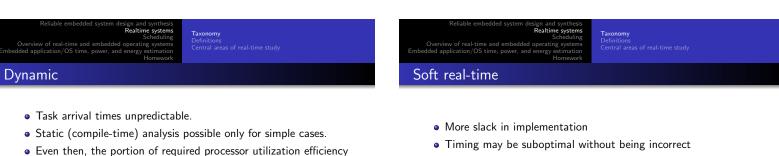

- Accurate reliability models
- Efficient system-level reliability models
- Efficient fault detection and recovery solutions

Robert Dick Embedded System Design and Sy

Optimization

- Many reliability techniques attempt to deal with arbitrary fault processes
- However, the properties of the fault process most significant for a particular appliation may be important
 - Considering them can allow more efficient and reliable designs

Robert Dick Embedded System Design a



Reliable embedded system design and synthesis Realtime systems Scheduing Systems mbedded application/OS time, power, and energy estimation Homework Static

- Task arrival times can be predicted.
- Static (compile-time) analysis possible.
- Allows good resource usage (low processor idle time proportions).

Embedded System Design and Sy

• Sometimes designers shoehorn dynamic problems into static formulations allowing a good solution to the wrong problem.

- Problem formulation can be much more complicated than hard real-time
- Two common (and one uncommon) methods of dealing with non-trivial soft real-time system requirements
 - Set somewhat loose hard timing constraints
 - Informal design and testing
 - Formulate as optimization problem

 Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework
 Taxonomy Definitions Central areas of real-time study
 Taxonomy Definitions Central areas of real-time study
 Taxonomy Definitions Central areas of real-time study

 Hard real-time
 Hard real-time
 Periodic
 Periodic

• Difficult problem. Some timing constraints inflexible.

Robert Dick

• In many real systems, this is very difficult to apply in reality

We assume, without loss of generality, that all tasks are

• Use the right tools but don't over-simplify, e.g.,

If you do this people will make jokes about you.

• Simplifies problem formulation.

goes to 0.693.

(more on this later).

independent.

- Each task (or group of tasks) executes repeatedly with a particular period.
- Allows some nice static analysis techniques to be used.
- Matches characteristics of many real problems...
- ... and has little or no relationship with many others that designers try to pretend are periodic.

Reliable embedded system design and synthesis Realtime systems Scheduling Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Homework	Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Scheduling Definitions Central areas of real-time study Periodic → Multirate Multirate
 One period in the system. Simple. Inflexible. This is how a <i>lot</i> of wireless sensor networks are implemented. 	 Multiple periods. Can use notion of circular time to simplify static (compile-time) schedule analysis E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. <i>Operations Research</i>, pages 699–719, July 1966. Co-prime periods leads to analysis problems.

Reliable embedded system design and synthesis Realitime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework
$Periodic \to Other$	Aperiodic
 It is possible to have tasks with deadlines less than, equal to, or greater than their periods. 	 Also called sporadic, asynchronous, or reactive

Embedded System Design and Synthesis

Robert Dick

• Results in multi-phase, circular-time schedules with multiple

This class of scheduler is nasty to code.

• If you ever need to deal with one of these, see me (take my code).

Robert Dick Embedded System Design and Synthe

concurrent task instances.

- Implies dynamic
 - Bounded arrival time interval permits resource reservation

Robert Dick

Embedded System Design and Synt

• Unbounded arrival time interval impossible to deal with for any resource-constrained system

38 Robert Dick	Embedded System Design and Synthesis	39 Robert Dick	Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Taxonomy Definitions Central areas of real-time study	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Taxonomy Definitions Central areas of real-time study
Definitions		Task	

- Task
- Processor
- Graph representations
- Deadline violation
- Cost functions

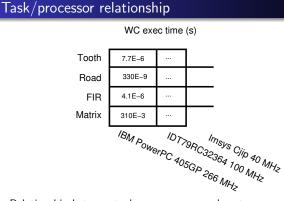
42

• Some operation that needs to be carried out

• Atomic completion: A task is all done or it isn't

• Non-atomic execution: A task may be interrupted and resumed

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems imbedded application/OS time, power, and energy estimation


Taxonomy Definitions Central areas of real-t

Processor

- Processors execute tasks
- Distributed systems
 - Contain multiple processors
 - Inter-processor communication has impact on system performance

Embedded System Design and S

- Communication is challenging to analyze
- One processor type: Homogeneous system
- Multiple processor types: Heterogeneous system

Robert Dick Embedded System De

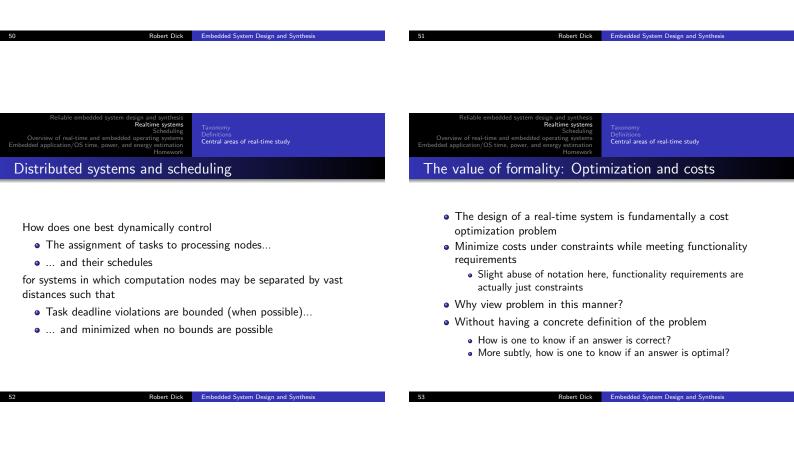
Definitions

Relationship between tasks, processors, and costs E.g., power consumption or worst-case execution time

Central areas of real-time study

Allocation, assignment, and scheduling

- In order to efficiently and (when possible) optimally minimize • Price, power consumption, soft deadline violations
- Under hard timing constraints
- Providing guarantees whenever possible
- For all the different classes of real-time problem classes

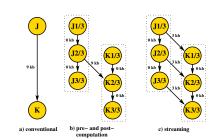

This is what I did for a Ph.D.

Central areas of real-time study

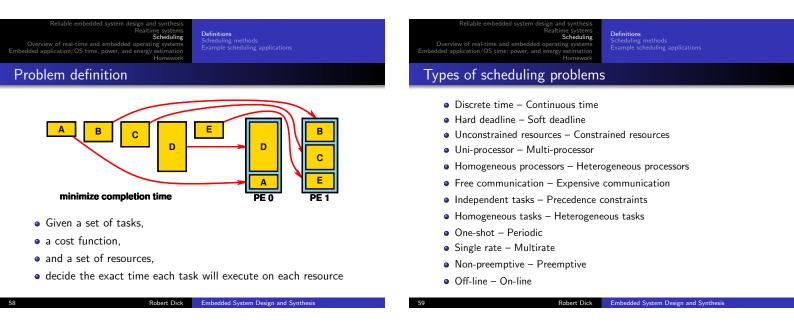
Operating systems and scheduling

How does one best design operating systems to

- Support sufficient detail in workload specification to allow good control, e.g., over scheduling, without increasing design error rate
- Design operating system schedulers to support real-time constraints?
- Support predictable costs for task and OS service execution


Central areas of real-time study

Optimization


Thinking of a design problem in terms of optimization gives design team members objective criterion by which to evaluate the impact of a design change on quality.

Know whether your design changes are taking you in a good direction

Graph extensions

Allows pipelining and pre/post-computation In contrast with book, not difficult to use if conversion automated

Reliable embedded system design and synthesis Realtime systems Scheduling Embedded application/OS time, power, and energy estimation Homework	Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework
Discrete vs. continuous timing	Hard deadline – Soft deadline

System-level: Continuous

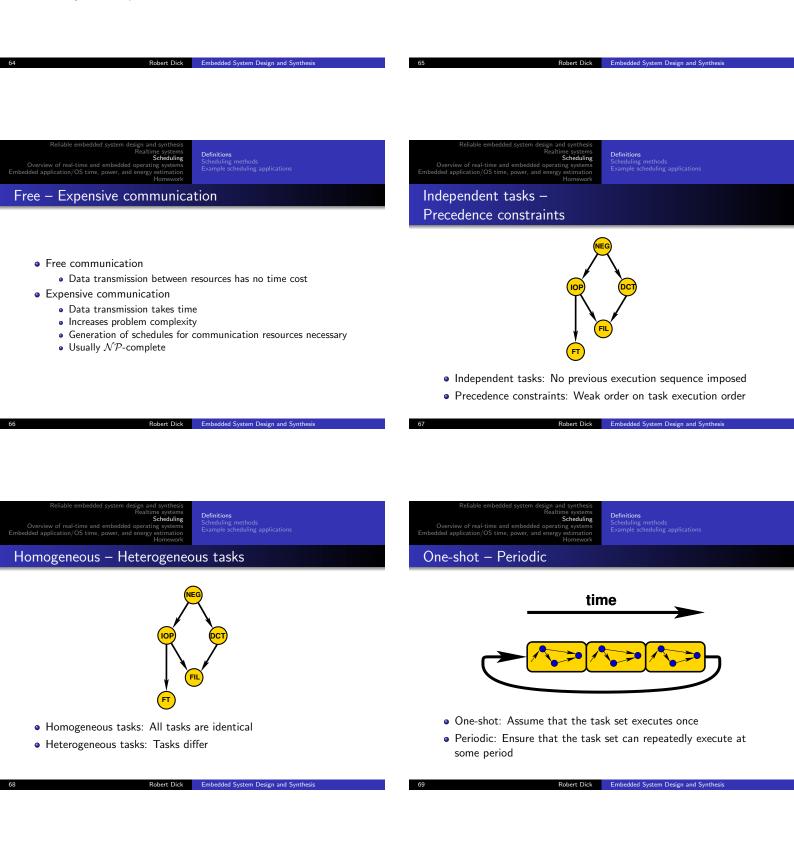
• Operations are not small integer multiples of the clock cycle High-level: Discrete

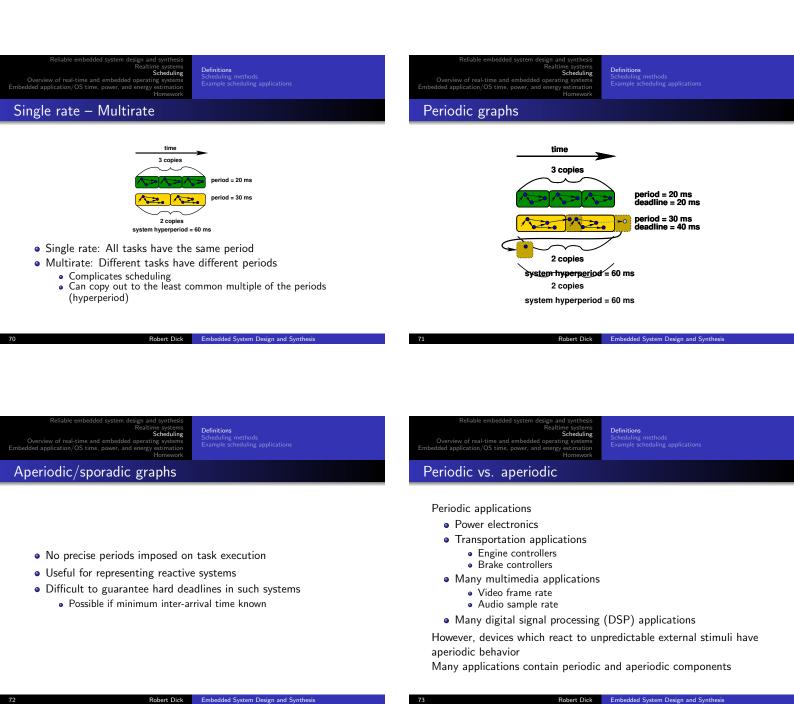
• Operations are small integer multiples of the clock cycle Implications:

- System-level scheduling is more complicated...
- ... however, high-level also very difficult.
- Can we solve this by quantizing time? Why or why not?

Tasks may have hard or soft deadlines

- Hard deadline
 - Task must finish by given time or schedule invalid
- Soft deadline
 - If task finishes after given time, schedule cost increased


Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Real-time – Best effort		Unconstrained – Constrained	resources
 Why make decisions about sys 	tem implementation statically?		


- Why make decisions about system implementation statically?
 Allows easy timing analysis, hard real-time guarantees
- If a system doesn't have hard real-time deadlines, resources can be more efficiently used by making late, dynamic decisions
- Can combine real-time and best-effort portions within the same specification
 - Reserve time slots
 - Take advantage of slack when tasks complete sooner than their worst-case finish times
- Unconstrained resources
 - Additional resources may be used at will
- Constrained resources
 - Limited number of devices may be used to execute tasks

Reliable embedded system design and synthesis Realitime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Uni-processor – Multi-processor		Homogeneous – Heterogeneous processors	

- Uni-processor
 - All tasks execute on the same resource
 - This can still be somewhat challenging
 - $\bullet\,$ However, sometimes in ${\cal P}$
- Multi-processor
 - There are multiple resources to which tasks may be scheduled
- Usually \mathcal{NP} -complete

- Homogeneous processorsAll processors are the same type
- Heterogeneous processors
 - There are different types of processors
 - $\bullet \ \ Usually \ \ \, \mathcal{NP}\text{-complete}$

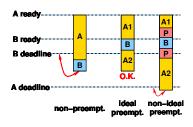
Overview of real-time and embedded o Embedded application/OS time, power, and	D Si E:

Aperiodic to periodic

Can design periodic specifications that meet requirements posed by a periodic/sporadic specifications

• Some resources will be wasted

Example:


- At most one aperiodic task can arrive every 50 ms
- It must complete execution within 100 ms of its arrival time

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Aperiodic to periodic	

- $\bullet\,$ Can easily build a periodic representation with a deadline and period of 50 ms
 - Problem, requires a 50 ms execution time when 100 ms should be sufficient
- Can use overlapping graphs to allow an increase in execution time
 - Parallelism required

The main problem with representing aperiodic problems with periodic representations is that the tradeoff between deadline and period must be made at design/synthesis time

Non-preemptive – Preemptive

- Non-preemptive: Tasks must run to completion
- Ideal preemptive: Tasks can be interrupted without cost
- Non-ideal preemptive: Tasks can be interrupted with cost

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Off-line – On-line	
Off-line	

- Schedule generated before system execution
- Stored, e.g., in dispatch table. for later use
- Allows strong design/synthesis/compile-time guarantees to be made
- Not well-suited to strongly reactive systems

On-line

- Scheduling decisions made during the execution of the system
- More difficult to analyze than off-line
 - Making hard deadline guarantees requires high idle time No known guarantee for some problem types

Embedded System Design and S

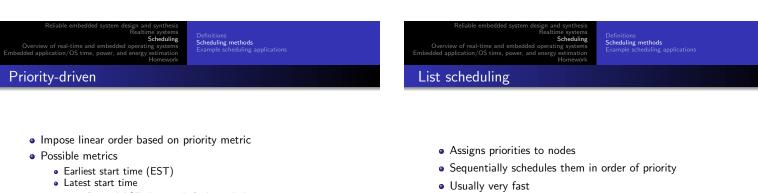
• Well-suited to reactive systems

Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Hardware-software co-synthe	sis scheduling	Hardware-software co-synthe	sis scheduling

Automatic allocation, assignment, and scheduling of system-level specification to hardware and software

- Scheduling problem is hard
 - Hard and soft deadlines
 - Constrained resources, but resources unknown (cost functions)
 - Multi-processor
 - Strongly heterogeneous processors and tasks
 - No linear relationship between the execution times of a tasks on processors

- Expensive communication
 - · Complicated set of communication resources
- Precedence constraints
- Periodic
- Multirate
- Strong interaction between \mathcal{NP} -complete allocation-assignment and \mathcal{NP} -complete scheduling problems
- Will revisit problem later in course if time permits

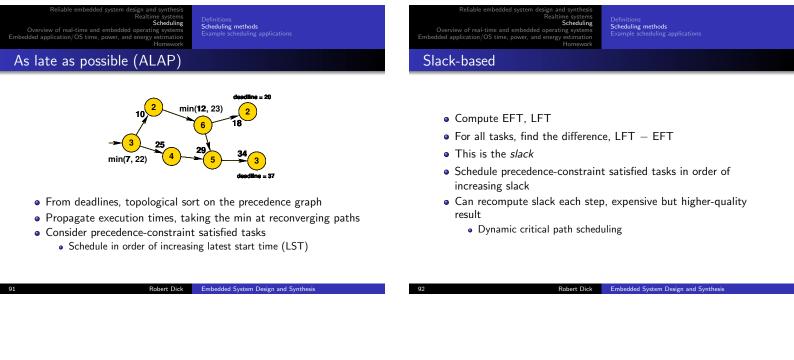

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realitime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Behavioral synthesis schedulir	ıg	Scheduling methods	
• Difficult real-world scheduling p	oroblem	ClockWeighted round-robbin	

- Not multirate
- Discrete notion of time
- Generally less heterogeneity among resources and tasks

Robert Dick

- What scheduling algorithms should be used for these problems?
- List scheduling
- Priority
 - EDF, LST
 - Slack
 - Multiple costs

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Schedduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Scheduling methods		Clock-driven scheduling	
 MILP Force-directed Frame-based PSGA RMS 		Clock-driven: Pre-schedule, repeat Music box: • Periodic • Multi-rate • Heterogeneous • Off-line • Clock-driven	schedule
83 Robert Dick	Embedded System Design and Synthesis	84 Robert Dick	Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Scheddling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications
Weighted round robbin		List scheduling	
Ti	B D D e-sliced with variable time slots	 Pseudo-code: Keep a list of ready jobs Order by priority metric Schedule Repeat Simple to implement Can be made very fast Difficult to beat quality 	


• Danger! LST also stands for least slack time.

Robert Dick Embedded System Design and Sy

- Shortest execution time first (SETF)
- Longest execution time first (LETF)
- Slack (LFT EFT)

- Can be high-quality
- Prioritization metric is important

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework As soon as possible (ASAP)	Definitions Scheduling methods Example scheduling applications
 As soon as possible (ASAP) As late as possible (ALAP) Slack-based Dynamic slack-based Multiple considerations 		 From root, topological sort on Propagate execution times, tak Schedule in order of increasing 	ing the max at reconverging paths
89 Robert Dick	Embedded System Design and Synthesis	90 Robert Dick	Embedded System Design and Synthesis

Definitions Scheduling methods cheduling method of real-time and ation/OS time, Multiple considerations Effective release times • Ignore the book on this • Nothing prevents multiple prioritization methods from being used

• Try one method, if it fails to produce an acceptable schedule, reschedule with another method

Embedded System Design and Synth

Robert Dick

- Considers simplified, uniprocessor, case
- Use EFT, LFT computation
- Example?

Reliable embedded system design and synthesis Realtime systems Scheduling methods Overview of real-time and embedded operating systems	Reliable embedded system design and synthesis Reliable methods Scheduling Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation Homework	Embedded application/OS time, power, and energy estimation Homework
EDF, LST optimality	Breaking EDF, LST optimality
 EDF optimal if zero-cost preemption, uniprocessor assumed Why? What happens when preemption has cost? Same is true for slack-based list scheduling in absence of preemption cost 	 Non-zero preemption cost Multiprocessor Why?
95 Robert Dick Embedded System Design and Synthesis	96 Robert Dick Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realitime systems Checkling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation	Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded opperating systems Embedded application/OS time, power, and energy estimation
Homework Multi-rate tricks	Linear programming
 Contract deadline Usually safe Contract period Sometimes safe Consequences? 	 Minimize a linear equation subject to linear constraints In P Mixed integer linear programming: One or more variables discrete NP-complete Many good solvers exist Don't rebuild the wheel

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation

ng Definitions ng Scheduling methods ns Example scheduling applicati

MILP scheduling

P the set of tasks t_{max} maximum time start(p, t) 1 if task p starts at time t, 0 otherwise D the set of execution delays E the set of precedence constraints t_{max}

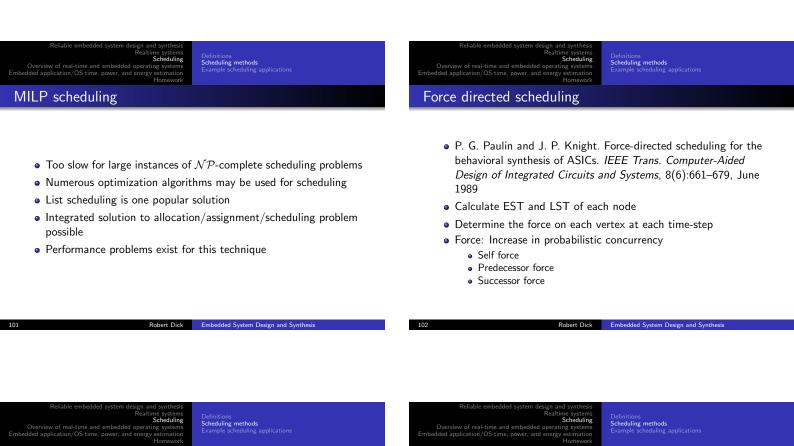
$$t_{start}(p) = \sum_{t=0}^{t_{max}} t \cdot start(p, t)$$
 the start time of p

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation

MILP scheduling

Each task has a unique start time

$$\forall_{p \in P}, \sum_{t=0}^{t_{max}} start(p, t) = 1$$


Each task must satisfy its precedence constraints and timing delays

Robert Dick

$$\forall \{p_i, p_j\} \in E, \sum_{t=0}^{t_{max}} t_{start}(p_i) \ge t_{start}(p_j) + d_j$$

Other constraints may exist

- Resource constraints
- Communication delay constraints

Self force

- F_i all slots in time frame for i
- F'_i all slots in new time frame for i
- D_t probability density (sum) for slot t
- δD_t change in density (sum) for slot t resulting from scheduling self force

$$A = \sum_{t \in F_a} D_t \cdot \delta D_t$$

pred all predecessors of node under consideration **succ** all successors of node under consideration

predecessor force

Force directed scheduling

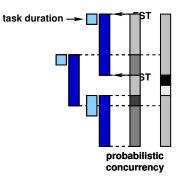
$$B = \sum_{b \in \mathbf{pred}} \sum_{t \in F_b} D_t \cdot \delta D_t$$

Predecessor and successor forces

successor force

$$C = \sum_{c \in \mathsf{succ}} \sum_{t \in F_c} D_t \cdot \delta D_t$$

ynthesis Systems Dofinitions


Overview of real-time and embedded operatin mbedded application/OS time, power, and energy of

Scheduling edded operating systems er, and energy estimation Homework

Intuition

total force: A + B + C

- Schedule operation and time slot with minimal total force
 Then recompute forces and schedule the next operation
- Attempt to balance concurrency during scheduling

cheduling methods

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Lawnple scheduling applications	Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Control of the system of t
Embedded application/OS time, power, and energy estimation Homework	Embedded application/OS time, power, and energy estimation Homework
Force directed scheduling	Implementation: Frame-based scheduling
 Limitations? What classes of problems may this be used on? 	 Break schedule into (usually fixed) frames Large enough to hold a long job Avoid preemption Evenly divide hyperperiod Scheduler makes changes at frame start Network flow formulation for frame-based scheduling Could this be used for on-line scheduling?
107 Robert Dick Embedded System Design and Synthesis	108 Robert Dick Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Gverview of real-time and embedded operating systems Entwidder systems	Reliable embedded system design and synthesis Realtime systems Scheduling Coverview of real-time and embedded operating systems E-study is scheduling applications
Embedded application/OS time, power, and energy estimation Homework	Embedded application/OS time, power, and energy estimation Homework
Problem space genetic algorithm	Rate mononotic scheduling (RMS)

- Let's finish off-line scheduling algorithm examples on a bizarre example
- Use conventional scheduling algorithm
- Transform problem instance
- Solve
- Validate
- Evolve transformations

- Single processor
- Independent tasks
- Differing arrival periods
- Schedule in order of increasing periods
- No fixed-priority schedule will do better than RMS
- Guaranteed valid for loading $\leq \ln 2 = 0.69$
- For loading $> \ln 2$ and < 1, correctness unknown
- Usually works up to a loading of 0.88

Realtime system Scheduling Overview of real-time and embedded operating system

Scheduling methods Example scheduling application:

Rate monotonic scheduling

Main idea

- $\bullet\,$ 1973, Liu and Layland derived optimal scheduling algorithm(s) for this problem
- $\bullet\,$ Schedule the job with the smallest period (period = deadline) first
- Analyzed worst-case behavior on any task set of size *n*
- Found utilization bound: $U(n) = n \cdot (2^{1/n} 1)$
- 0.828 at *n* = 2
- As $n \to \infty$, $U(n) \to \log 2 = 0.693$
- \bullet Result: For any problem instance, if a valid schedule is possible, the processor need never spend more than 31% of its time idle

Robert Dick Embedded System Desig

reliable embedded system design and synthes Realtine system Overview of real-time and embedded operating system Embedded application/OS time, power, and energy estimatic Homewo	ns Definitions Scheduling methods ns Example scheduling applica

Optimality and utilization for limited case

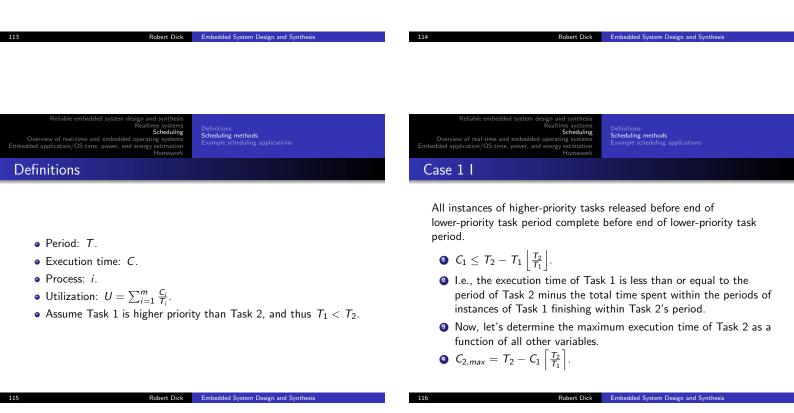
- Simply periodic: All task periods are integer multiples of all lesser task periods
- $\bullet\,$ In this case, RMS/DMS optimal with utilization 1 $\,$
- However, this case rare in practice
- Remains feasible, with decreased utilization bound, for in-phase tasks with arbitrary periods

Realtime systems Scheduling Overview of real-time and embedded operating systems mbedded application/OS time, power, and energy estimation

Scheduling methods Example scheduling app

Rate monotonic scheduling

Critical instants


Scheduling methods Example scheduling application

- Constrained problem definition
- Over-allocation often results
- However, in practice utilization of 85%–90% common
 Lose guarantee
- If phases known, can prove by generating instance

Main idea:

A job's critical instant a time at which all possible concurrent higher-priority jobs are also simultaneously released

Useful because it implies latest finish time

Reliable embedded system design and synthesis Realitime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling methods Example scheduling applications	Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Definitions Scheduling Example s
Case 1 II		Case 1 III	
		In this case,	
		$U = U_1 + U_2$	<i>I</i> ₂

 I.e., the maximum execution time of Task 2 is the period of Task 2 minus the total execution time of instances of Task 1 released within Task 2's period.

Robert Dick Embedded System Design and Synthesis

$$U = U_1 + U_2$$

$$= \frac{C_1}{T_1} + \frac{C_{2,max}}{T_2}$$

$$= \frac{C_1}{T_1} + \frac{T_2 - C_1 \left\lceil \frac{T_2}{T_1} \right\rceil}{T_2}$$

$$= \frac{C_1}{T_1} + 1 - \frac{C_1 \left\lceil \frac{T_2}{T_1} \right\rceil}{T_2}$$

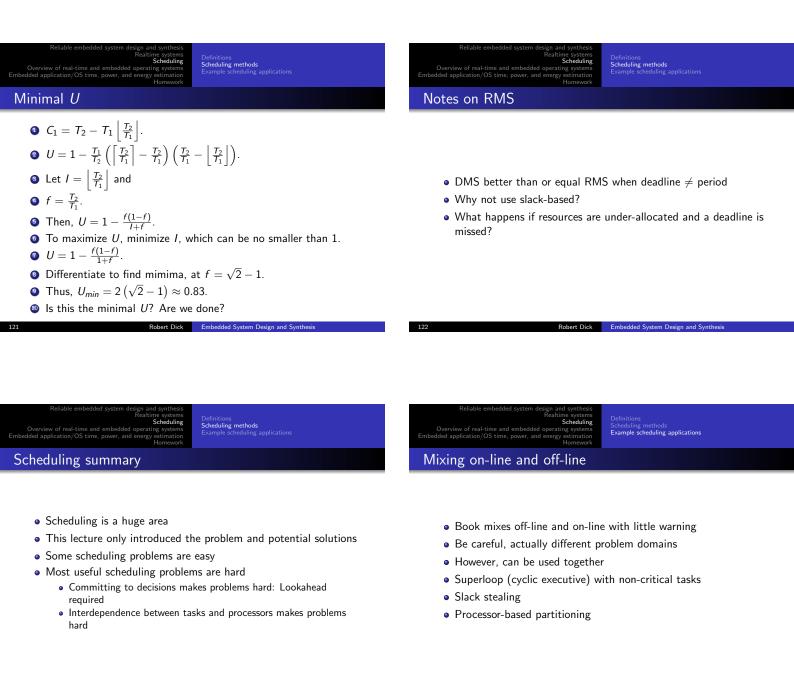
$$= 1 + C_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \left\lceil \frac{T_2}{T_1} \right\rceil \right)$$

$$\text{Is } \frac{1}{T_1} - \frac{1}{T_2} \left\lceil \frac{T_2}{T_1} \right\rceil < 0?$$

$$\text{Model System Design and Synth}$$

Case 1 IV		Case 2 I
Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation	Definitions Scheduling methods Example scheduling applications	Overview of real-time and embedded operat Embedded application/OS time, power, and energy
Reliable embedded system design and synthesis Realtime systems		Reliable embedded system design a Realti

• Thus, U is monotonically decreasing in C_1 .


Instances of higher-priority tasks released before end of lower-priority task period complete after end of lower-priority task period.

cheduling methods

$$C_1 \ge T_2 - T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor.$$

$$C_{2,max} = -C_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor + T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor.$$

$$U = \frac{T_1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor + C_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor \right).$$

	Realtime systems Scheduling
Overview of real-time and embedded	operating systems
mbedded application/OS time, power, and	l energy estimation

Definitions Scheduling methods Example scheduling appli

Vehicle routing

Reartime systems Scheduling Overview of real-time and embedded operating systems bedded application/OS time, power, and energy estimation

Scheduling methods Example scheduling applications

Mixing on-line and off-line

- Low-price, slow, ARM-based system
- Long-term shortest path computation
- Greedy path calculation algorithm available, non-preemptable
- Don't make the user wait
 - Short-term next turn calculation
- 200 ms timer available

- Slack stealing
- Processor-based partitioning

126 Robert Dick Embedded System Design and Synthesis	127 Robert Dick Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operative sectors	Reliable embedded system design and synthesis Realtime systems Scheduling Scheduling methods
Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework
Bizarre scheduling idea	Example problem: Static scheduling
 Scheduling and validity checking algorithms considered so far operate in time domain This is a somewhat strange idea Think about it and tell/email me if you have any thoughts on it Could one very quickly generate a high-quality real-time off-line multi-rate periodic schedule by operating in the frequency domain? If not, why not? What if the deadlines were soft? 	 What is an FPGA? Why should real-time systems designers care about them? Multiprocessor static scheduling No preemption No overhead for subsequent execution of tasks of same type High cost to change task type Scheduling algorithm?
I28 Embedded System Design and Synthesis Reliable embedded system design and synthesis Realtime systems Realtime systems Scheddling Scheddling Definitions Scheddling Scheduling applications Problem: Uniprocessor independent task scheduling	129 Robert Dick Embedded System Design and Synthesis Reliable embedded system design and synthesis Realtime systems Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Homework
 Problem Independent tasks 	Provides real-time scheduling algorithms or primativesBounded execution time for OS services

• Each has a period = hard deadline

Robert Dick Embedded System Design and Synthe

- Zero-cost preemption
- How to solve?

- Usually implies preemptive kernel
- E.g., Linux can spend milliseconds handling interrupts, especially disk access

Realtime systems
Scheduling
ew of real-time and embedded operating systems
aplication /OS time, nower, and energy estimation

Threads

 Threads vs. 	processes:	Shared vs	unshared	resources

- OS impact: Windows vs. Linux
- Hardware impact: MMU

• Threads: Low context switch overhead

Overview of real-time and e

Threads vs. processes

- Threads: Sometimes the only real option, depending on hardware
- Processes: Safer, when hardware provides support
- Processes: Can have better performance when IPC limited

133 Robert Dick	Embedded System Design and Synthesis	134	Robert Dick	Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy systems Homework		Overview of rea	embedded system design and synthesis Realtime systems Scheduling I-time and embedded operating systems /OS time, power, and energy estimation Homework	
Software implementation of s	schedulers	TinyOS		
 TinyOS 				
 Light-weight threading execution 	ive	 Most 	behavior event-driven	
 μC/OS-II 		High	$rate \to Livelock$	
• •		_		

- Linux
- Static list scheduler

• Research schedulers exist

Robert Dick

Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	

Robert Dick Embedded System Design and Synthesis

ert Dick

BD threads

- Brian Dean: Microcontroller hacker
- Simple priority-based thread scheduling executive
- Tiny footprint (fine for AVR)
- Low overhead
- No MMU requirements

μC/OS-II

- Similar to BD threads
- More flexible
- Bigger footprint

Old Linux scheduler

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

$\mathcal{O}(1)$ scheduler in Linux 2.6

- Single run queue
- $\mathcal{O}(n)$ scheduling operation
- Allows dynamic goodness function

- Written by Ingo Molnar
- Splits run queue into two queues prioritized by goodness
- Requires static goodness function
 No reliance on running process
- Compatible with preemptible kernel

139 Robert Dick	Embedded System Design and Synthesis	140 Robert Dick Embedded	System Design and Synthesis
Reliable embedded system design and synthesis Realitime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework		Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	
Real-time Linux		Real-time operating systems	
	odel Interface) attempts to simplify ms at > 18 kHz control period	 Embedded vs. real-time Dynamic memory allocation Schedulers: General-purpose vs. real-ti Timers and clocks: Relationship with H 	łW
141 Robert Dick	Embedded System Design and Synthesis		System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results	Scheduling Examples of	n, motivation, and past work f energy optimization infrastructure
Collaborators on project		Introduction	
Princeton Niraj K. Jha	NEC Labs America Ganesh Lakshminarayana Anand Raghunathan	 Real-Time Operating Systems are often systems They simplify use of hardware, ease matasks, and adhere to real-time constraites Power is important in many embedded RTOSs can consume significant amounter They are re-used in many embedded systems They impact power consumed by applitional RTOS power effects influence system-Interpret system-Interpret power effects influence system-Interpret systems 	anagement of multiple nts systems with RTOSs nt of power ystems cation software

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Simulation infrastructure Results	Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Simulation infrastructure Results
Real-time operating systems	(RTOS)	General-purpose OS stress	
 Interaction between HW and S² Rapid response to interrupts HW interface abstraction Interaction between different ta Communication Synchronization Multitasking Ideally fully preemptive Priority-based scheduling Fast context switching Support for real-time clock 		 Good average-case behavior Providing many services Support for a large number of 	hardware devices
Reliable embedded system design and synthesis		Reliable embedded system design and synthesis	
Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results	Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results
RTOSs stress		Predictability	
 Predictable service execution ti Predictable scheduling Good worst-case behavior Low memory usage Speed Simplicity 	imes	 General-purpose computer arch Caches Prefetching Speculative execution Real-time embedded systems n Disabling or locking caches i Careful evaluation of worst-co Specialized or static memory 	need predictability is common case is essential
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework RTOS overview	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework RTOS power consumption	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results
Applications MPEG encoding Communication etc. HPC HPC RTOS services Timer Task manager	Basic 10 ISR Frocessor Memory Timer Other hardware Hardware	 Used in several low-power emb Need for RTOS power analysis Significant power consumpti Impacts application software Re-used across several applic 	s on e power

- Impacts application software power
 Re-used across several applications

esign and synthesis Realtime systems

Robert Dick Embedded System Design and Synthesis

Message

151

Organize \$

Databas Tasks

Realtime systems

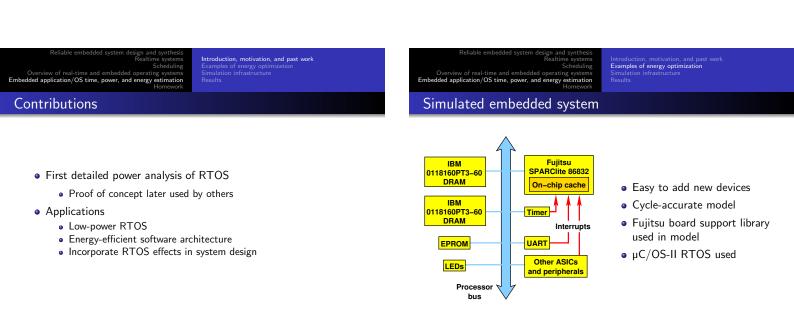
Realtime systems Scheduling Overview of real-time and embedded operating systems bedded application/OS time, power, and energy estimation

oduction, motivation, and past work

RTOS and real-time references

- K. Ramamritham and J. Stankovic. Scheduling algorithms and operating systems support for real-time systems. *Proc. IEEE*, 82(1):55–67, January 1994
- Giorgio C. Buttazzo. *Hard Real-Time Computing Systems*. Kluwer Academic Publishers, Boston, 2000

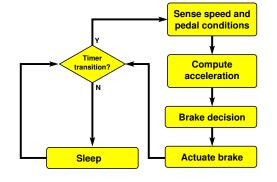
- Reliable embedded system design and synthesis Realtime systems Schedulus Embedded application/OS time, power, and energy estimation Homework Prior work
 - Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low energy: An overview. In *Proc. Int. Symp. Low-Power Electronics*, pages 38–39, October 1994
 - Y. Li and J. Henkel. A framework for estimating and minimizing energy dissipation of embedded HW/SW systems. In *Proc. Design Automation Conf.*, pages 188–193, June 1998
 - J. J. Labrosse. MicroC/OS-II. R & D Books, KS, 1998


153 Robert Dick	Embedded System Design and Synthesis	154 Robert Dick	Embedded System Design and Synthesis
Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results	Reliable embedded system design and synthesis Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results
RTOS power references		RTOS power references	

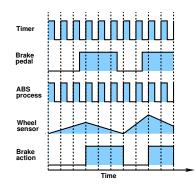
Journal version Design Automation Conference 2000 work in the area of RTOS power consumption analysis

 Robert P. Dick, G. Lakshminarayana, A. Raghunathan, and Niraj K. Jha. Analysis of power dissipation in real-time operating systems. *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems*, 22(5):615–627, May 2003

Robert Dick Embedded System Design and S


- K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and B. Jacob. The performance and energy consumption of three embedded real-time operating systems. In *Proc. Int. Conf. Compilers, Architecture & Synthesis for Embedded Systems*, pages 203–210, November 2001
- T.-K. Tan, A. Raghunathan, and Niraj K. Jha. EMSIM: An energy simulation framework for an embedded operating system. In *Proc. Int. Symp. Circuits & Systems*, pages 464–467, May 2002

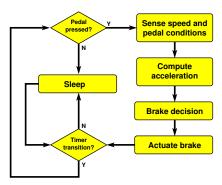
Examples of energy optimization Simulation infractory Embedded application/OS time, power, and energy estimation Periodically triggered ABS


Embedded System Design and S

n Design a

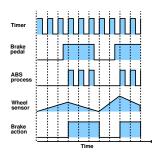
Introduction, motivation, and past Examples of energy optimization Simulation infractment Overview of real-time and embedded operating system Embedded application/OS time, power, and energy estimation

Periodically triggered ABS timing



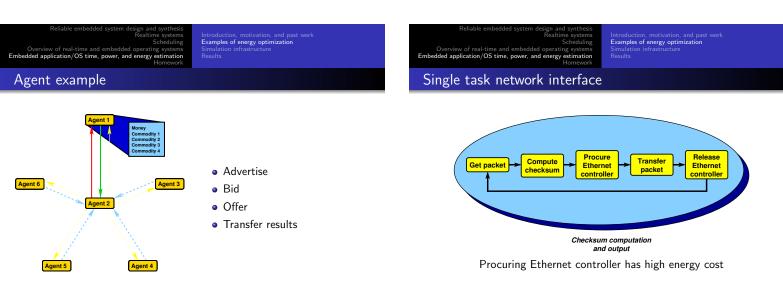
rt Dick

Embedded System Design and S

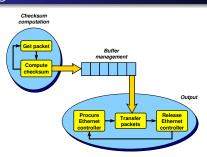

Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating system mbedded application/OS time, power, and energy estimation Homework	Selectively triggered ABS	
	Realtime systems Scheduling Overview of real-time and embedded operating systems mbedded application/OS time, power, and energy estimation	Examples of energy op Simulation infrastructu

Robert Dick

Robert Dick


Reliable embedded system design and synthesis Realitime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework	Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results
Selectively triggered ABS tin	ning

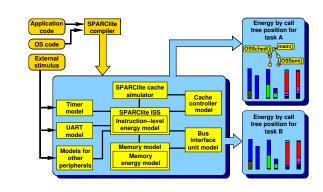
63% reduction in energy and power consumption


Emb

rt Dick

Embedded application/OS time, power, and energy e

Multi-tasking network interface

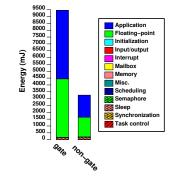


RTOS power analysis suggests process re-organization. 21% reduction in energy consumption. Similar power consumption.

Embedded System Design and S

Overview of real-time and embedded operati Embedded application/OS time, power, and energy

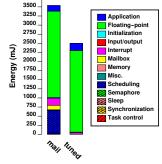
Infrastructure


Robert Dick Embedded System Design and Synthe

Overview of real-time and embedded operatin Embedded application/OS time, power, and energy

ABS optimization effects

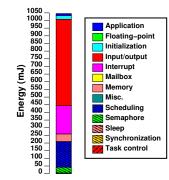
166


172

Robert Dick

- Redesigned application after using simulator to locate areas where power was wasted
- 63% energy reduction
- 63% power reduction
- RTOS directly accounted for 50% of system energy

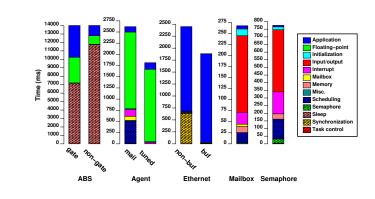
• Mail version used RTOS mailboxes for information transmission


ation, and past work optimization

- Tuned version carefully hand-tuned to used shared memory
- Power can be reduced at a cost
 - Increased application
 - software complexity Decreased flexibility

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Results Ethernet optimization effects Mailbox example Determined that 375 3250 3000 350 synchronization routine cost Application Floating-point Initialization 325 Application Floating-point 2750 was high 2500 300 2250 Used RTOS buffering to 275 Initialization nput/output Energy (mJ) 2000 nterrupt amortize synchronization 250 Input/output Mailhox Ĵ Ľ • Rapid mailbox communication 1750 225 Interrupt costs Memory 1500 200 Mailbox between tasks Misc. 1250 • 20.5% energy reduction Energy Memory Schedulina 175 • RTOS directly accounted for Remap 1000 Misc. 150 Sleep Scheduling 0.2% power reduction 750 125 99% of system energy Synchronization Semaphore 500 RTOS directly accounted for 100 Task control Sleep 250 75 1% of system energy Synchronization 0_ 50 non bur bur • Energy savings due to Task control 25 improved RTOS use, not 0_ reduced RTOS energy Robert Dick Embedded System Design and Synthesis 173 Robert Dick Embedded System Design and Synthe

Embedded application/OS time, power, and energy


Semaphore example

- Semaphores used for task synchronization
- RTOS directly accounted for 98.7% of system energy

Overview of real-time and embedded o Embedded application/OS time, power, and e

Time results

Energy bounds

Service	Minimum	Maximum
Jervice	energy (µJ)	energy (µJ)
AgentTask	3.41	4727.88
fptodp	17.46	49.72
BSPInit	3.52	3.52
fstat	16.34	16.34
CPUInit	287.15	287.15
fstat_r	31.26	31.26
GetPsr	0.38	0.55
init_bss	2.86	3.07
GetTbr	0.40	0.53
init_data	4.23	4.37
InitTimer	2.53	2.53
init_timer	18012.10	20347.00
OSCtxSw	46.63	65.65
init_tvecs	1.31	1.31
OSDisableInt	0.84	1.31

Semaphore example hierarchical call tree

			Energy(µJ)			_
		Function	invocation	Energy (%)	Time (ms)	Calls
realstart	init_tvecs		1.31	0.00	0.00	1
25.40 mJ total	init_timer	liteled	4.26	0.00	0.00	1
2.43 %	18.01 mJ total					
	1.72 %					
	startup	do_main	7363.11	0.70	5.57	1
	7.39 mJ total	save_data	5.08	0.00	0.00	1
	0.71 %	init_data	4.23	0.00	0.00	1
		init_bss	2.86	0.00	0.00	1
		cache_on	8.82	0.00	0.01	1
Task1	win.unf.trap		6.09	1.16	9.43	1999
508.88 mJ total	OSDisableInt		0.98	0.09	0.82	1000
48.69 %	OSEnableInt		1.07	0.10	0.92	1000
	OSSemPend	win_unf_trap	6.00	0.57	4.56	999
	104.59 mJ total	OSDisableInt	0.94	0.18	1.56	1999
	10.01 %	OSEnableInt	0.94	0.18	1.56	1999
		OSEventTaskWait	13.07	1.25	9.89	999
		OSSched	66.44	6.35	51.95	999
	OSSemPost	OSDisableInt	0.96	0.09	0.78	1000
	9.82 mJ total	OSEnableInt	0.98	0.09	0.81	1000
	0.94 %					
	OSTimeGet	OSDisableInt	0.84	0.08	0.66	1000
	4.62 mJ total	OSEnableInt	0.98	0.09	0.81	1000
	0.44 %					
	CPUInit	BSPInit	3.52	0.00	0.00	1
	0.29 mJ total	exceptionHandler	15.51	0.02	0.17	15
	0.03 %					
	printf	win_unf_trap	6.18	0.59	4.87	1000
	368.07 mJ total	vfprintf	355.04	33.97	257.55	1000
	35.22 %	-				

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation

Example power-efficient change to RTOS

- Small changes can greatly improve RTOS power consumption
- $\bullet~\mu C/OS\text{-II}$ tracks processor loading by incrementing a counter when idle
- However, this is not a good low-power design decision
- NOPs have lower power than add or increment instructions
- Sleep mode has *much* lower power
- Can disable loading counter and use NOPs or sleep mode

Reliable embedded system design and synthesis
Realtime systems
Scheduling
Overview of real-time and embedded operating systems

Example power-efficient change to RTOS

- Alternatively, can use timer-based sampling
 - Normally NOP or sleep when idle
 - Wake up on timer ticks
 - Sample highest non-timer ISR task
 - If it's the idle task, increment a counter
 - Can dramatically reduce power consumption without losing functionality

Realtime systems Scheduling Overview of real-time and embedded operating systems mbedded application/OS time, power, and energy estimation

RTOS Conclusions

Realtime systems Scheduling Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Reference

- Demonstrated that RTOS significantly impacts power
- RTOS power analysis can improve application software design

Embedded System Design and S

- Applications
 - Low-power RTOS design
 - Energy-efficient software architecture
 - Consider RTOS effects during system design

Kaushik Ghosh, Bodhisattwa Mukherjee, and Karsten Schwan. A survey of real-time operating systems. Technical report, College of Computing, Georgia Institute of Technology, February 1994

Realtime syster Scheduli Overview of real-time and embedded operating syster

Homework

Scheduling and reliability reading

- Due 27 September: C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. *J. of the ACM*, 20(1):46–61, January 1973.
- Due 29 September: Robert P. Dick. Reliability, thermal, and power modeling and optimization. In *Proc. Int. Conf. Computer-Aided Design*, pages 181–184, November 2010.
- Due 4 October: Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task graph scheduling algorithms. *J. of Parallel and Distributed Computing*, 59(3):381–422, 1999.
- Due 6 October: L. Yang, Robert P. Dick, Haris Lekatsas, and Srimat Chakradhar. High-performance operating system controlled on-line memory compression. ACM Trans. Embedded Computing Systems, 9(4):30:1–30:28, March 2010.

Reliable embedded system design and synthesis Realtime systems Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation

Upcoming topic

Embedded system memory hierarchies.