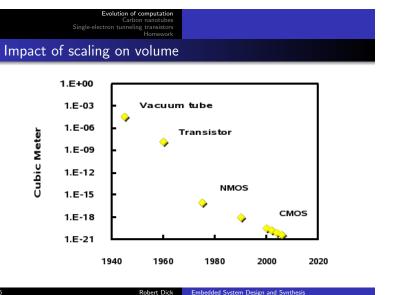
Embedded System Design and Synthesis

Robert Dick

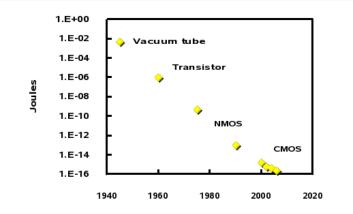
http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan

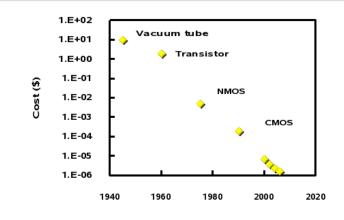

Transition

 Discuss Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. Analysis of wireless sensor networks for habitat monitoring. In C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, editors, *Wireless Sensor Networks*, chapter 18, pages 399–423. Springer US, 2004.

Embedded System Design and Synth-

- Practice exam.
- Impact of technology trends.

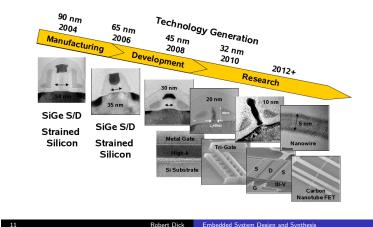

Evolution of computation	Evolution of computation
Carbon nanotubes	Carbon nanotubes
Single-electron tunneling transistors	Single-electron tunneling transistors
Homework	Homework
Two major sources of changing problems	Evolution of computation
New implementation technologies. New applications.	 1800s: Mechanical Late 1800s-early 1900s: Electro-mechanical Early 1900s-mid 1900s: Vacuum tube electronic Mid 1900s-late 1900s: Bipolar (TTL) Late 1900s-early 2000s: MOS


Impact	Single-elect	Evolution of computation Carbon nanotubes tron tunneling transistors Homework g on delay			
Delay (Sec)	1.E+01 1.E-01 1.E-03 1.E-05 1.E-07 1.E-09 1.E-11	vacur • ↓ • ↓ • ↓ • ↓	um tube Transistor IMO	S СМО 2000	5

Carbon nanotubes

Impact of scaling on energy consumption

Impact of scaling on price



Carbon nanotubes Single-electron tunneling transistors Homework

Scaling trends

High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2016	2018
Technology Node (nm)	90	65	45	32	22	16	11	8
Integration Capacity (BT)	2	4	8	16	32	64	128	256
Delay = CV/l scaling	0.7	~0.7	>0.7	De	lay sca	ling will	slow do	wn
Energy/Logic Op scaling	>0.35	>0.5	>0.5	Energy scaling will slow down			own	
Bulk Planar CMOS	Hig	h Proba	bility			Low	Probab	oility
Alternate, 3D etc	Low	v Proba	bility			High	Probab	oility
Variability	Medium			Hig	High Very High			
Inter-Ir dielectric k	~3	<3		Redu	uce slov	vly towa	ırds 2-2	.5
RC Delay	1	1	1	1	1	1	1	1
Metal Layers	6-7	7-8	8-9	0.5	to 1 la	yer per	generat	ion

Evolution of computation Carbon nanotubes Single-electron tunneling transistors Homework Device trends

Carbon nanotub Single-electron tunneling transisto

Advantages of CMOS relative to prior technologies

Robert Dick Embedded System Design and Synth

Robert Dick

- Performance
- Gain, low noise
- Area
- Massive integration
- Power
- Reliability
- Fabrication difficulty & cost

• 32 nm

• Power, thermal problems severe

Current status for CMOS

- Fabrication cost per design high
- Potential reliability problems in future
- Soft errors
- Electromigration, dielectric breakdown, etc.
- Process variation
- Soon: Discrete dopant problems

Evolution of a

Com

Computing trends applications

Advantages of alternative nanotechnologies

- Increased market volume and size for portable and embedded systems compared to general-purpose computers.
- Instructor's opinion: Embedded will grow in importance in the future.
- High-performance general-purpose computing will still matter.

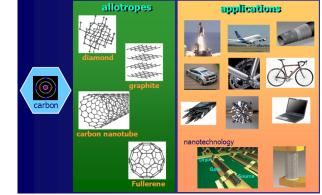
Robert Dick Embedded System Design and Synt

• Much of the general-purpose computation will move to data centers.

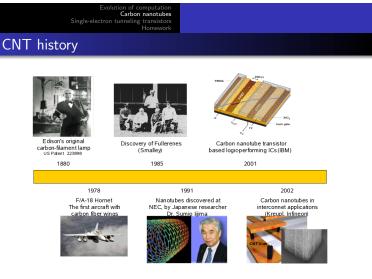
May allow continued process scaling after CMOS scaling impractical.

Robert Dick Embedded System Design and Synt

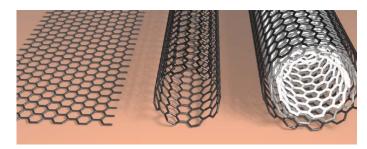
- Candidates
- Carbon nanotube
- Nanowire Single electron tunneling transistors


Carbon nanotube

n of	f nar	losc	ale t	techi	nolog	ies		
					0			
	Table :	9 Emergi	ng Research I	ogic Devices-	Demonstrated	Projected Par	ameters	
D	Verice	4	-	<u>چ</u>	-D+D-	٢	\bigcirc	-9
		FET (8)	1D structures	Resonant Tunneling Devices	SET	Molecular	Ferromagnetic logic	Spin transist
τ)per	Si CMOS	CNT FET NW FET NW hetero- structures Crosshar nanostructure	RTD-FET RTT	SET	Crossbar latch Molecular transistor Molecular QCA	Moring domain wall M: QCA	Spin transie
Supported	Architectures	Conventional	Conventional and Cross-her	Correctional and CNN	CNN	Cross-bar and QCA	CNN Reconfigure logic and QCA	Convention
Cell Size	Projected	100 nm	100 nm [C]	100 nm [C]	40 nm [L]	10 nm [Q]	140 nm [U]	100 nm [C
(spatial pitch)	Demonstrated	590 nm	~1.5 µm [D]	3µm (H)	~700 nm [M]	~2µm [R]	250 nm [V, W]	100 µm [X
Density	Projected	1E10	4.5E9	4.5E9	6E10	1E12	5E9	4.5E9
(device/cm ²)	Demonstrated	2.8E8	467	1E7	2E8	2E7	1.6E9	1E4
Switch Speed	Projected	12 THz	6.3 THz [E]	16 THz [I]	10 THz [M]	1 THz [S]	1 GHz [U]	40 GHz [Y
	Demonstrated	1 THz	200 MHz [F]	700 GHz [J]	2 THz [N]	100 Hz [R]	30 Hz [V, W]	Not known
Circuit Speed	Projected Demonstrated	61 GHz 5.6 GHz	61 GHz [C] 220 Hz [G]	61 GHz [C] 10 GHz [Z]	1 GHz [L] 1 MHz [F]	1 GHz [Q] 100 Hz [R]	10 MHz [U] 30 Hz [V]	Not know Not know
Switching	Projected	3E-18	3E-18	>3E-18	1×10 ⁻¹⁸ [L] [>1.5×10 ⁻¹⁷] [O]	5E-17 (T)	-1E-17 [V]	3E-18
Evergy, J	Demonstrated	1E-16	1E-11 [G]	1E-13 [K]	8×10 ⁻¹⁷ [P] [>1.3×10 ⁻¹⁴][O]	3E-7 (R)	6E-18 [W]	Not know
Binary	Projected	238	238 [C]	238 [C]	10	1000	5E-2	Not know
Throughput, GBitins/cw ²	Demonstrated	1.6	1E-8	0.1	2E-4	2E-9	5E-8	Not know
Operations	al Temperature	RT	RT	4.2 - 300 K	20 K [L]	RT	RT	RT
Materi	ials System	Si	CNT, Si, Ge, III-V, In ₂ O ₂ , ZnO, TIO ₂ , SIC,	III-V Si-Ge	III-V Si	Organic molecules	Ferromagnetic alloys	Si, III-V, complex metals oxides
Research acti	vite (A)		171	88	65	204	25	102

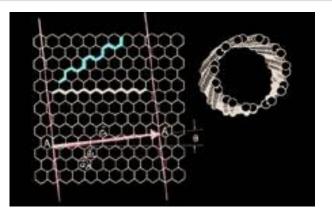

Credit to ITRS'05 report on Emerging Research Devices.

Robert Dick Embedded System Design and Sy



Robert Dick Embedded S

Evolution of computation Carbon nanotubes Single-electron tunneling transistors Homework CNT classes


Graphene

Single-walled CNT

Multi-walled CNT

Carbon n

Chirality

Carbon nanotubes

Metallic and semiconducting CNTs

Zigzag (semi-conducting)	Armchair (metallic)	
Zigzag (semi-conducting)			
Zigzag (semi-conducting)			
Zigzag (semi-conducting)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Zigzag (sei	ni-conducting)	
	Zigzag (ser	ni-conducting)	

Embedded System Design and Sy

Homework		CNTs compared with Cu
n of computation arbon nanotubes neling transistors		Evolution of computa Carbon nanoto Single-electron tunneling transis

- Metallic or semiconducting.
- Diameter: 0.4–100 nm.
- Length: up to millimeters.
- Ballistic transport.

CNT properties

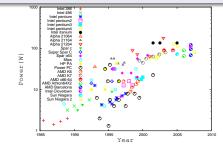
- Excellent thermal conductivity.
- Very high current density.
- High chemical stability.
- Robust to environment.
- Tensile strength: 45 TPa.
 - Steel is 2 TPa.
- Temperature stability
- 2,800°C in vacuum.
 - 700°C in air.

Property	CNT	Cu
Max I dens. (A/cm ²)	$>1 imes10^9$ (Wei et al., APL'01)	$1 imes 10^7$
Thermal cond. (W/mK)	5,800 (Hone et al., Phy Rev B'99)	385
Mean free path (nm)	> 1.000 (McEuen et al. T Nano'02)	40

Carbon nanotub

Carbon nanotubes Single-electron tunneling transistors Homework		
IRAM		
carbon nanotube ribbons	supports Oxide layer silicon wafer	Off state

- Uses Van der Waals forces.
- Non-volatile.
- SRAM-like speed.
- DRAM-like density.
- Ready for market in 2007 (and 2008, and 2009, and 2010, and 2011).


Robert Dick Embedded Sys

• IEEE Spectrum loser of the year. Why?

Single-electro

Power challenges

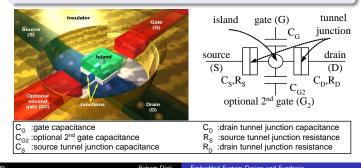
High-performance applications: energy cost, temperature, reliability Portable embedded systems: battery lifetime

Evolution of computation Carbon nanotubes

What does history teach us about power consumption?

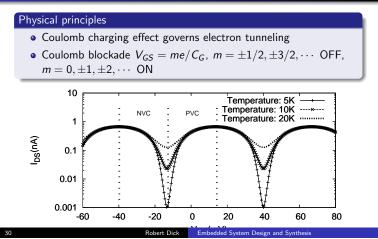
Device innovations have been the most effective method

- Vacuum tube to semiconductor device in the 1960s
- Bipolar device to CMOS transistor in the 1990s



Based on diagram by C. Johnson, IBM Server and Technology Group

Single electron tunneling transistor structure


Device structure

- Island, terminals (source, drain, gate)
- Electron tunneling through tunneling junctions

Carbon nanotubes Single-electron tunneling transistors

Single electron tunneling transistor behavior

Carbon nanotubes Single-electron tunneling transistors

SET properties and challenges

Jltra	low	power	
-------	-----	-------	--

• Projected energy per switching event $(1 \times 10^{-18} \text{ J})$

Room temperature and fabrication challenge

 Electrostatic charging energy must be greater than thermal energy

•
$$e^2/C_{\Sigma} > k_B T$$

• Requires $e^2/C_{\sum} > 10k_BT$ or even $e^2/C_{\sum} > 40k_BT$

Carbon nanotubes Single-electron tunneling transistors

SET properties and challenges

Performance challenge

- Electrons must be confined in the island
- $R_S, R_D > h/e^2, \ h/e^2 = 25.8 \, \mathrm{k}\Omega$
- High resistance, low driving strength

Reliability concerns

- Tunneling between charge traps cause run-time errors
- Unknown before fabrication
- Device technology: Improved by silicon islands
- Reliable design: Post-fabrication adaptation
- Run-time error correction

	Carbon	Hallot
Single-electron	tunneling	transi

Summary

- CMOS will be mainstream for years to come, but not forever.
- The meaning of integrated circuits will change in the future.
- Circuit and logic design fundamentals will still apply.
- Some rules, e.g., difficulty of implementing non linearly separable functions, may change.
- You will each need to adapt as the rules governing device behavior change, but this will be much faster now that you have a foundation.

Homework

- Due 20 October: Mini-project report.
- Due 20 October: Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. Analysis of wireless sensor networks for habitat monitoring. In C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, editors, *Wireless Sensor Networks*, chapter 18, pages 399–423. Springer US, 2004.
- Due 25 October: Main project proposal.
- Due 25 October: Email me one paper that you have read when working on your project that you think might be of interest to the entire class.
- Due 25 October: Ben W. Cook, Steven Lanzisera, and Kristofer S. J. Pister. SoC issues for RF smart dust. *Proc. IEEE*, 94(6), June 2006.

Robert Dick Embedded System Design and Synthesis