Fundamental Limitations to CMOS Scaling

0

Presented by: Sijia He Xiaoming Guo Bangqi Xu

October 29, 2013

Outline

- Motivation for scaling
- Fabrication difficulties
- High leakage current
- Possible solutions

Motivation for Scaling

Scaling = Improving performance
 Moore's Law

Motivation for Scaling

- More transistors --> Higher performance
- Less delay time --> Higher frequency
- Less V_{DD} --> Lower power consumption
 Transistor Gate Delay

Fabrication Difficulties

Problems in lithography

The Electromagnetic Spectrum

Fabrication Difficulties

- State-of-the-art lithography: 193nm UV
- Next Generation: I3.5nm EUV

Fabrication Difficulties

- Problems of I3.5nm EUV: Cost!
 - Need to change the entire lithography equipment
 - Still take some time to reach 14-nm technology or lower.
 - As a result: Cost overwhelms benefits.

High Leakage Current

- Five major sources of leakage current:
 - Gate oxide tunneling leakage
 - Subthreshold leakage
 - Reverse-bias junction leakage
 - Gate induced drain leakage
 - Gate current due to hot-carrier injection

Gate Oxide Tunneling Leakage

Quantum tunneling

--Phenomenon where a particle tunnels through a barrier that it classically could not surmount

More significant as t_{ox} goes down

Subthreshold Leakage

- Current is not 0 when the transistor is off
- From lecture slides 5, we have equation
 S=n(kT/q)ln(10)

S: Change in V_{GS} for I_D to change 10x

 Scaling -> Smaller threshold voltage -> Nearer to the V_{GS} = 0 -> Higher subthreshold leakage

Possible solutions

Strained Silicon

High-k Metal Gate

Tri-Gate

Strained Silicon

High-k Metal Gate

Tri-Gate

Tri-Gate

Reference:

- Intel's Revolutionary 22 nm Transistor Technology, <u>http://download.intel.com/newsroom/kits/22nm/pdfs/</u> <u>22nm-Details Presentation.pdf</u>
- Dmitri Nikonov, CMOS Scaling, <u>http://nanohub.org/resources/18348/download/</u> <u>NikonovBeyondCMOS 1 scaling.pdf</u>
- http://3.bp.blogspot.com/ Se0VANaI9uM/R9zN-QzfETI/ AAAAAAAAQc/VIr5pgUAHZk/sI600-h/leakage+vs +power.jpeg
- Y.Taur, CMOS design near the limit of scaling, <u>http://paginas.fe.up.pt/~jcf/PCVLSI/2003-04/taur.pdf</u>
- http://www.coachingworks.de/workinprogress/wpcontent/uploads/2010/04/02_UV_Light_Spectrum.gif

Reference:

- Mark Bohr, Silicon Technology Leadership for the Mobility era, <u>http://www.intel.com/content/dam/www/public/us/en/</u> <u>documents/presentation/silicon-technology-leadership-</u> <u>presentation.pdf</u>
- <u>http://www.ixbt.com/cpu/semiconductor/intel-65nm/</u> <u>lith_challenge.jpg</u>
- http://en.wikipedia.org/wiki/Quantum_tunnelling
- http://en.wikipedia.org/wiki/Potential barrier
- <u>http://citeseerx.ist.psu.edu/viewdoc/download?</u> doi=10.1.1.87.5308&rep=rep1&type=pdf
- <u>http://download.intel.com/pressroom/kits/45nm/</u>
 <u>Press45nm107_FINAL.pdf</u>