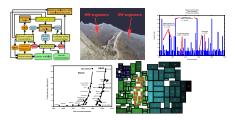
Digital Integrated Circuits – EECS 312


http://robertdick.org/eecs312/

Teacher: Robert Dick Office: 2417-E EECS Email: dickrp@umich.edu

Shengshou Lu Office: 2725 BBB Email: luss@umich.edu

GSI:

734-763-3329 Phone: Cellphone: 847-530-1824

Lab 3

- Input inverters.
- Implications of sizing on energy consumption.

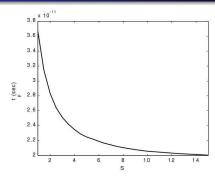
Derive and explain.

Inverter chain delay optimization

- Size (width) of first inverter in chain,
- Driven load,
- Transistors are minimal length, and
- $W_p/W_n = 2$ approximately balances t_{pHL} and t_{pLH} .

Find

- Optimal number of inverters in chain and
- Optimal size (width) of each inverter


to minimize chain delay.

Review

- Design a non-trivial logic gate.
- What happens to inverter delay as the driving MOSFET widths are increased?
- What happens to inverter delay as the driven MOSFET widths are increased?
- What impact does non-instantaneous rise/fall time have on the propagation delay for the subsequent logic stage?

Robert Dick Digital Integrated Circuit

Dependence of delay on width (R)

- Fix R_LC_L and vary W.
- Eventually, self-loading dominates.

Robert Dick Digital Integrated C

Intuition

- Given two inverters (first fixed) and a large load (C_L) , how should the second be sized to minimize delay?
- $C_{G2} = C_{G1}$ (minimal)?
- $C_{G2} > C_L$?
- $C_{G2} = C_L$?
- Some other setting?
- Why?

$$t_{p} = 0.69 \left(\frac{R}{S} SC_{int} \left(1 + \frac{C_{L}}{SC_{int}} \right) \right)$$

$$t_{p} = 0.69 RC_{int} \left(1 + \frac{C_{L}}{SC_{int}} \right)$$

$$t_{p} = t_{p0} \left(1 + \frac{C_{L}}{SC_{int}} \right)$$

 t_{p0} : Intrinsic delay.

- Scaling doesn't impact intrinsic delay.
- Scaling does impact total delay.
- $t_p o t_{p0}$ as $S o \infty$.
- Diminishing returns with increasing S.

 $T_{pHL} = T_{pLH} = 0.69RC_L$ $C_{i} = 3 \frac{W_{i+1}}{W_{unit}} C_{unit}$ $t_{p} = 0.69 R(C_{int} + C_{L})$

Let $W = W_n = W_p/2$ $R = R_p = R_n$

Consider chain of inverters I

$$\begin{split} t_{p,chain} &= t_{p1} + t_{p2} + \dots + t_{pn} \\ t_{pi} &\approx t_{p0} \left(1 + \frac{C_{g,i+1}}{\gamma C_{g,i}} \right) \\ t_{p,chain} &= \sum_{i=1}^{N} t_{pi} \\ t_{p,chain} &= t_{p0} \sum_{i=1}^{N} \left(1 + \frac{C_{g,i+1}}{\gamma C_{g,i}} \right) \end{split}$$

Given that

 $C_{g,N+1} = C_L$

Consider chain of inverters II

and

$$\gamma = rac{C_{int}}{C_g} pprox 1$$
 (technology-dependent constant).

Sketch of derivation

- For each i, find $\sigma t_{P,chain}/\sigma C_{g,i}$.
- Solve for $\sigma t_{p,chain}/\sigma C_{g,i}=0, \forall_{i=1}N$.
- Result is $\frac{C_{g,i+1}}{C_{g,i}} = \frac{C_{g,i}}{C_{g,i-1}}$. Each stage size geometric mean of previous and next: $C_{g,i} = \sqrt{C_{g,i-1}C_{g,i+1}}$.
- Constant factor relates sizing of all adjacent gate pairs.
- Each stage has same delay.

Sizing for optimal inverter chain delay

- Optimal stage-wise sizing factor: $\sqrt[N]{\frac{C_L}{C_{g,1}}}$.
- ullet Minimum path delay: $t_{p,chain} = N t_{p0} \left(1 + \sqrt[N]{rac{C_L}{C_{e.1}}}/\gamma
 ight)$

Optimizing N I

Example of inverter sizing

Given

- $C_L = 16C_1$.
- *N* = 4.

Per-stage scaling factor: $\sqrt[4]{16C_1/C_1} = 2$

Let

$$\begin{split} \Phi &= \frac{C_L}{C_{g,1}} \\ t_{p,chain} &= N t_{p0} \left(1 + \frac{\sqrt[N]{\Phi}}{\gamma} \right) \\ t_{p,chain} \frac{d}{dN} &= \gamma + \sqrt[N]{\Phi} - \frac{\sqrt[N]{\Phi} \ln \left(\Phi \right)}{N} \end{split}$$

Robert Dick

Digital Integrated Circuits

15

Robert Dick

Digital Integrated Circuits

Inverter sizin
Impact of input voltage function on energy consumptic
Interconnect modelin

Optimizing N II

Set this to zero.

Let
$$\phi = \sqrt[N]{\Phi}$$

$$0 = \gamma + \phi - \frac{\phi \ln (\phi^N)}{N}$$

$$0 = \frac{\gamma}{\phi} + 1 - \frac{\ln (\phi^N)}{N}$$

$$0 = \frac{\gamma}{\phi} + 1 - \frac{N \ln (\phi)}{N}$$

$$0 = \frac{\gamma}{\phi} + 1 - \ln (\phi)$$

$$\ln (\phi) = \frac{\gamma}{\phi} + 1$$

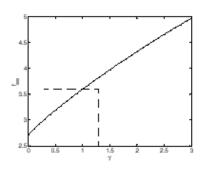
Optimizing N III

$$\phi=\mathrm{e}^{\gamma/\phi+1}$$

Hard to deal with this for $\gamma \neq 0$. Consider implications for $\gamma = 0$.

$$\phi = e$$

Robert Dick

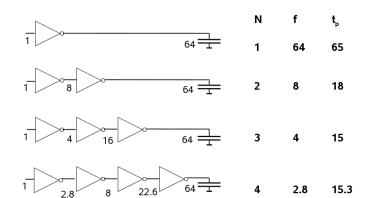

Digital Integrated Circuits

Robert D

Digital Integrated Circuits

Inverter sizing

Optimal stage sizing factor


- Optimal tapering factor for $\gamma =$ 0: $e \approx$ 2.7.
- $\bullet \ \ 3.6 \ \ \text{for} \ \ \gamma = 1.$

Inverter sizing
Impact of input voltage function on energy consumption
Interconnect modeling

 $\overline{t_{p,chain}}(\Phi)$

Ф	Unbuffered	N = 2	Optimal N
10	11	8.3	8.3
100	101	22	16.5
1,000	1,001	65	24.8
10,000	10,001	202	33.1

Buffering example

Upcoming topics

- Interconnect.
- Alternative logic design styles.

Review

- How can the optimal number of inverters in a load-driving chain be determined?
- How can the optimal size of each inverter in the chain be decided?
- How do determine optimal sizes of logic gates in arbitrary structures?
 - May cover this near end of course.
- Do example problem.

Derive and explain.

Power consumption in synchronous CMOS

$$\begin{split} P &= P_{SWITCH} + P_{SHORT} + P_{LEAK} \\ P_{SWITCH} &= C \cdot V_{DD}^2 \cdot f \cdot A \\ \dagger P_{SHORT} &= \frac{b}{12} (V_{DD} - 2 \cdot V_T)^3 \cdot f \cdot A \cdot t \\ P_{LEAK} &= V_{DD} \cdot (I_{SUB} + I_{GATE} + I_{JUNCTION} + I_{GIDL}) \end{split}$$

C: total switched capacitance V_{DD} : high voltage f: switching frequency A: switching activity b: MOS transistor gain V_T : threshold voltage

t: rise/fall time of inputs

† P_{SHORT} usually $\leq 10\%$ of P_{SWITCH}

Smaller as $V_{DD}
ightarrow V_{\mathcal{T}}$

A < 0.5 for combinational nodes, 1 for clocked nodes.

Reasons for power consumption

- Dynamic
 - Charging and discharging RC loads.
 - $\bullet E_{dyn} = C_L V_{DD}^2$
 - $P_{dyn} = C_L V_{DD}^2 f$. But $f \propto V_{DD}$.

 - So $P_{dyn} = C_L V_{DD}^3$.
- Static
 - Sub-threshold leakage.
 - · Gate leakage.
- Short-circuit: Pull-up and pull-down networks briefly both on.

Fixed voltage charging

$$\begin{split} E_R^{step} &= \int_{t=0}^{\infty} V_R(t) \, I_R(t) \, dt \\ E_R^{step} &= \int_{t=0}^{\infty} V_R(t) \, \frac{V_R(t)}{R} dt \\ E_R^{step} &= \int_{t=0}^{\infty} V_{DD} e^{-t/RC} \frac{V_{DD} e^{-t/RC}}{R} dt \\ E_R^{step} &= \frac{V_{DD}^2}{R} \int_{t=0}^{\infty} e^{-2t/R} dt \\ E_R^{step} &= \frac{V_{DD}^2}{R} \left(-\frac{RC}{2} \right) \left(e^{-2t/RC} \right)_{t=0}^{\infty} \\ E_R^{step} &= \frac{-V_{DD}^2 C}{2} \left(0 - 1 \right) \\ E_R^{step} &= \frac{V_{DD}^2 C}{2} \end{split}$$

Fixed current charging II

Inverter size
Impact of input voltage function on energy consumpti

$\Delta V = \frac{\Delta q}{C}$ $V_{DD} = \frac{I_R T}{C}$ $I_R = \frac{CV_{DD}}{T}$ $V_R = RI_R$ $E_R^{ramp} = \int_{t=0}^T I_R(t) V_R(t) dt$ $E_R^{ramp} = \int_{t=0}^T \frac{CV_{DD}}{T} \frac{RCV_{DD}}{T} dt$ $E_R^{ramp} = \frac{RV_{DD}^2 C^2}{T^2} \int_{t=0}^T 1 dt$

Robert Dick

igital Integrated Circuits

 $E_R^{ramp} = \int_{t=0}^{\infty} V_R(t) I_R(t) dt$

Let T be the voltage ramp duration, I_R is fixed. V_R is fixed.

Inverter sizin,
Impact of input voltage function on energy consumptio
Interconnect modelin,
Homewor

Fixed current charging III

$$E_R^{ramp} = \frac{V_{DD}^2 C^2 R}{T^2} T$$

$$E_R^{ramp} = \frac{V_{DD}^2 C^2 R}{T}$$

$$E_R^{ramp} = \frac{V_{DD}^2 C}{2} \frac{2RC}{T}$$

Robert Dick

Digital Integrated Circu

Inverter sizing
Impact of input voltage function on energy consumption
Interconnect modeling
Homework

Break-even point

$$E_R^{step} = E_R^{ramp}$$

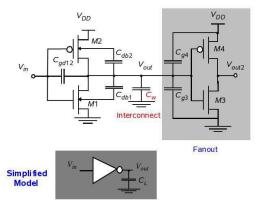
$$\frac{V_{DD}^2 C}{2} = \frac{V_{DD}^2 C}{2} \frac{2RC}{T}$$

$$1 = \frac{2RC}{T}$$

$$T = 2RC$$

- Properly controlling $V_{R}(t)$.
- Performance.
- In limit, permits reversible computation with low/no power consumption during charging and discharging.

Digital Integrated Circuit

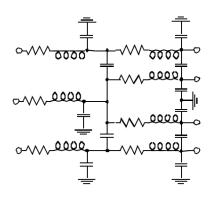

Inverter sizin
Impact of input voltage function on energy consumptio
Interconnect modelin

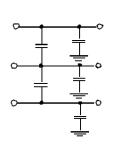
Charging methods summary

- ullet I(t) influences energy consumption for same change in V.
- In theory, keeping voltage differences very small can permit extremely low-power operation.
- Leakage, current control, and preserving reversiblity make this challenging.

Inverter sizing
Impact of input voltage function on energy consumption
Interconnect modeling
Homework

Capacitive load modeling


Robert Dick

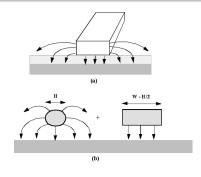

Digital Integrated Circuits

Robert Dick

Digital Integrated Circuits

Interconnect modeling

Interconnect capacitance



$$C = \frac{\epsilon_{ox}}{t_{ox}} WL$$

Permittivity (k)

Material	ϵ
Vacuum	1
Aerogels	~ 1.5
Polyimides	3–4
SiO_2	3.9
Glass-epoxy	5
Si_3N_4	7.5
Alumina	9.5
Silicon	11.7

Fringing

$$c_{wire} = c_{pp} + c_{fringe} = W \frac{\epsilon_{ox}}{t_{ox}} + \frac{2\pi\epsilon_{ox}}{\log(t_{ox}/H)}$$

Trends in interconnect design

- More metal layers.
- Lower aspect ratios.
 - More coupling.
- Smaller transistors, but similar-length global interconnect.

Upcoming topics

- Alternative logic design styles.
- Latches and flip-flops.
- Memories.

Homework assignment

• 10 October: Homework 2.

• 10 October: Read sections 5.4, 5.5, 5.6, and 3.5 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.

Prentice-Hall, second edition, 2003.

• 17 October: Read sections 6.2.1, 4.1, and 4.3.2 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A*

Design Perspective.

Prentice-Hall, second edition, 2003.

• 22 October: Lab 3.

41

ert Dick

Digital Integrated Circuit