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Inverter transfer curves and parameter optimization
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Announcement

1 I will be in Montreal on Tuesday presenting a research paper at
Embedded Systems Week.

2 I will lecture at the Friday discussion time and location.

3 Mr. Lu will hold discussion at the Tuesday lecture time slot and
location.
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Review

1 How many metal layers are there in modern processes?

2 What is the problem with isotropic etching?

3 Explain a method of anisotropic etching.

4 Why Cu?

5 Why damascene?

6 What is CMP?

7 What is DRC?
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Example low-k dielectric materials

Still active area.

Porous SiO2.

Carbon-doped SiO2.

Polymer.
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Synchronous integrated circuit organization

Combinational networks separated by memory elements.

When memory elements clocked, changed signals race through
next stage.

Clock frequency must be low enough to allow signal to propagate
along worst-case combinational path in circuit.

Derive and explain.
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Diode dynamic behavior
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MOSFET capacitances
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Gate capacitance
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Gate capacitance schematic

Mode CGCB CGCS CGCD CG

Cutoff CoxWL 0 0 CoxWL+ 2COW
Triode 0 CoxWL/2 CoxWL/2 CoxWL+ 2COW

Saturation 0 2/3CoxWL 0 2/3CoxWL+ 2COW

CO is the overlap capacitance.
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Gate capacitance variation with VGS
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Gate capacitance variation with saturation
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Diffusion capacitance diagram
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Diffusion capacitance expression

Cdiff = Cbot + Csw

Cdiff = CjA+ CjswP

Cdiff = CjLSW + Cjsw (2LS +W )

Cbot : Bottom capacitance to substrate.

Csw : Side-wall capacitances for three non-channel sides.

Cj : Junction capacitance constant in F/m2 (base units).

A: Diffusion area.

Cjsw : Junction side-wall capacitance constant in F/m.

P : Perimeter for three non-channel sides.

LS : Length of diffusion region.

W : Width of diffusion region (and transistor).
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Junction capacitance

Cjsw is actually the diode capacitance we considered before.

What happens as reverse bias increases?

Can use worst-case approximation.
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Capacitance linearization I

Can approximate variable capacitance as fixed capacitance.

Uses fitting.

Ceq =
∆Qj

∆VD

Ceq =
Qj (Vhigh)− Qj (Vlow )

Vhigh − Vlow

Ceq = KeqCj0

Keq =
−φm

0

(Vhigh − Vlow ) (1−m)

(
(φ0 − Vhigh)

1−m − (φ0 − Vlow )
1−m

)
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Capacitance linearization II

Cj0: Capacitance when voltage bias of diode is 0 V.

m: Grading coefficient used to model effects of sharp (0.5) or
linear (0.33) junction transition (see Page 82 in textbook).

φ0 = φT ln
(
NAND
ni 2

)
: Built-in potential, i.e., voltage across

junction due to diffusion at drift–diffusion equalibrium.
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Capacitance parameters for default 0.25 µm process
technology

COX CO Cj

(fF/µm2) (fF/µm) (fF/µm2)

NMOS 6 0.31 2
PMOS 6 0.27 1.9

mj φb Cjsw mjsw φbsw

(V) (fF/µm) (V)

NMOS 0.5 0.9 0.28 0.44 0.9
PMOS 0.48 0.9 0.22 0.32 0.9

Properties of bottom and sidewall.
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Upcoming topics

MOSFET dynamic behavior.

Wires.

CMOS inverters.
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Review

What are the five most important to model capacitances for
MOSFETs?

Explain their locations/sources.

How do they depend on operating region?

How are drain and source capacitances calculated?
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Review: diode capacitance

CJ =
CJ0

(1− VD/Φ0)
m

m = 0.5 for abrupt junctions, m = 0.33 for linear junctions
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A change to gate insulation

Mark T. Bohr, Robert S. Chau, Tahir Ghani, and Kaizad Mistry.

The High-k Solution.
IEEE Spectrum, October 2007.

What was the problem?

What was its cause?

What was the solution?

Key concepts: gate leakage, tunneling, high-κ dielectric, charge
traps, single atomic layer deposition, and threshold voltage
control.
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Simple inverter context
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Inverter layout
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Implications of cell-based design

Power and ground sharing breaks isolation.
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Simplest switch model of inverter
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Switch model transient behavior

Repeatedly charging/discharging load C .

tpHL = f (RonCL).

Why?
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Inverter switch model tpHL derivation

Both tpHL and tpLH defined as time from 0.5VDD input crossing to
0.5VDD output crossing. Assume step function on input.

VC = VDDe
−t/RC (1)

Solve for VC = VDD/2.

VDD/2 = VDDe
−t/RC (2)

1/2 = e
−t/RC (3)

ln (1/2) = −t/RC (4)

t = −RC · −0.69 (5)

t = 0.69RC = 0.69τ (6)
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NMOSFET I–V characteristics

Review: Is this a velocity-saturated short-channel device? How can you tell?
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Inverter load characteristics
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CMOS inverter transfer curve
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Switching threshold derivation I

Find voltage for which Vin = Vout . Known: Both NMOSFET and
PMOSFET saturated at this point. Recall that

IDSAT = µCox
W

L

(
(VGS − VT )VDSAT − VDSAT

2

2

)
(1)
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Switching threshold derivation II

Working to find VM . Find VGS at which NMOSFET and PMOSFET
ID values equal.

= kVDSAT (VGS − VT )−
VDSAT

2
(2)

0 = knVDSATn

(
VM − VTn −

VDSATn

2

)
+

kpVDSATp

(
VM − VTp −

VDSATp

2

)
(3)
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Switching threshold derivation III

Solve for VM .

VM =

(
VTn +

VDSATn
2

)
+ r

(
VDD + VTp +

VDSATp

2

)

1 + r
. (4)

r =
kpVDSATp

knVDSATn
=

νsatpWp

νsatnWn
(5)

ν =
µξ

1 + ξ/ξc
(6)

ν: Charge carrier speed.

ξ: Field strength.

ξc : Field strength at which scattering limits further increase in
carrier speed.
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Inverter threshold dependence on transistor conductance
ratio
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Upcoming topics

CMOS inverter dynamic behavior.

Logic gates.
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Homework assignment

1 October: Read sections 3.3.3, 5.1, 5.2, 1.3.2, and 1.3.3 in

J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003. Read as much as you can by
27 September.

26 October: Extended Homework 1 due date due to difficulty
getting help during office hours.

3 October: Lab 2.
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