Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

MOSFET operating regions MOSFET short channel effects

Writing, drop box

Writing		
1	Organization.	
2	Get to the point.	
3	Show, don't tell.	
4	Keep it relatively formal.	
3	This is awesome: William Strunk Jr. and E. B. White. <i>The Elements of Style.</i> Macmillan Publishing Co., Inc., 2000.	

In-out box

EECS 2417, in the jungle to the back-right of the room.

MOSFET operating regions

Homework 1 tips

- Problem 1: Use equations in textbook or lecture notes packet 4.
- Problem 2: See lecture notes packet 2 and use reasoning. Can explain/justify assumptions you make, e.g., frequency is closely related to number of operations per second. Can also use other sources, but cite them.
- Problem 4: Use cited equation in lecture notes packet 2.
- Problems 5 and 6: Learned these in lecture and lab assignment 1.

Digital Integra

- Problems 7 and 8: Learned these in lecture.
- Problem 10: This is an extension from lab assignment 1 and what we learned about PMOSFETs in lectures 2 and 3.
- Problems 11 and 12: We learned these in lecture 4.

MOSFET operating regio

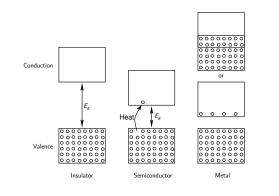
Midterm exam time

- Our original midterm exam time conflicted with many classes.
- Now shifted to 7:00-8:30 on 8 October in 1670 BBB.

OSFET operating regions

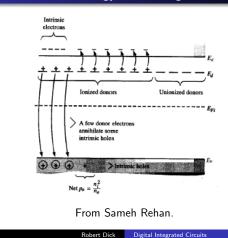
Special topics talks

- I read all of your areas of interest and boiled this down to general topics you might give special topics talks on.
- Shengshuo posted a Google document, which you used to select topics.
- I added dates to all topics.
- Talks will be given in the middle of lecture: 5-7 minutes.
- First one is 24 Sep on fabrication. It might be good to talk with or exchange email with me about the details on this.
- If your talk topic looks similar to something in the course overview document, it is best to send me an outline of your talk a week or two ahead of time so I can warn you if we might be covering the same material.
- If you will use slides, send me a PDF by midnight of the previous day at the latest. I will project using my laptop, and will post the slides to the website.


MOSFET operating regio

Review of semiconductor basics and diodes

- Electrons and holes.
- Intrinsic charge carriers and doping.
- Diffusion and drift.
- Built-in potential.
- I-V curve for diodes.
- Avalanche breakdown.


MOSFET ope MOSFET short c

Material properties

MOSFET three MOSFET oper MOSFET short ch

Dopant influence on energy band diagram

MOSFET threshold voltage	MOSFET threshold voltage
MOSFET operating regions MOSFET short channel effects Homework	MOSFET operating regions MOSFET short channel effects Homework
NMOSFET	MOSFET properties
gate dielectric source (N) channel drain (N) silicon bulk (P)	 Voltage-controlled current. Very little steady-state I_{GS} and I_{GD}. When on, channel sandwiched between insulator and depletion region. Bulk bias can be changed. Generally made minimal-length: Why?
10 Robert Dick Digital Integrated Circuits	11 Robert Dick Digital Integrated Circuits
MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects Homework	MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects Homework
MOSFET symbols	Physics-based threshold voltage expression
	$V_{T} = \Phi_{ms} - 2\Phi_{F} - \left(rac{Q_B}{C_{ox}} + rac{Q_{SS}}{C_{ox}} + rac{Q_I}{C_{ox}} ight)$

- $\Phi_{ms} = \Phi_m \Phi_s$: Gate work function, point at which charge transfer due to differing work functions stops.
- $\Phi_F = \Phi_T \ln \left(\frac{N_A}{n_i} \right)$: Fermi potential.

•
$$\Phi_T = \frac{kT}{a}$$
.

- $\frac{Q_B}{C_{ox}}$: Voltage due to depletion layer charge. $\frac{Q_{SS}}{C_{ox}}$: Voltage due to surface charge.
- $\frac{Q_I}{C_{\alpha x}}$: Voltage due to implants.

$$Q_B = \sqrt{2qN_A\epsilon_{Si}\left(|-2\Phi_F + V_{SB}|\right)}$$

Precisely determining these parameters is challenging.

s

Depletion mode NMOSFET

s NMOSFET

12

s

NMOSFET w.

bulk contact

13

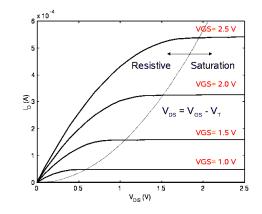
S

PMOSFET

Robert Dick Digital Integrated Circuits

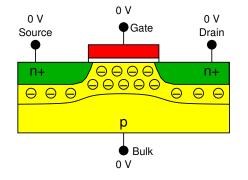
MOSFET operating region

Empirical threshold voltage expression

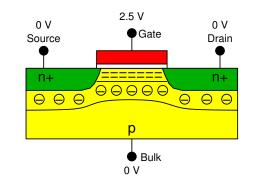

$$V_{T} = V_{T0} + \gamma \left(\sqrt{|-2\Phi_{F} + V_{SB}|} - \sqrt{|2\Phi_{F}|} \right)$$
$$V_{T0} = \Phi_{ms} - 2\Phi_{F} - \left(\frac{Q_{B0}}{C_{ox}} + \frac{Q_{SS}}{C_{ox}} + \frac{Q_{I}}{C_{ox}} \right)$$
$$\gamma = \frac{\sqrt{2q\epsilon_{SI}N_{A}}}{C_{ox}}$$

Digital Integrated (

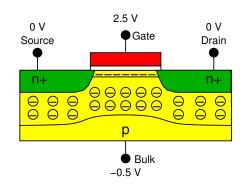
- V_{T0} : V_T at $V_{SB} = 0$. Usually measured directly.
- Q_{B0} : Depletion layer charge when $V_{SB} = 0$.
- γ : Body-effect coefficient expressing impact of ΔV_{SB} .


MOSEE1 threshold voltage MOSEET operating regions MOSEET short channel effects

I–V relationship


Robert Dick Digital Integrated Circui

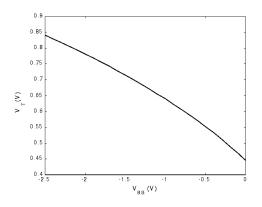
Unbiased


Depletion regions at P–N junctions.

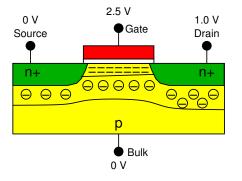
V_{GS} high

 Inversion in thin channel under gate.

Body bias: V_{BS} low



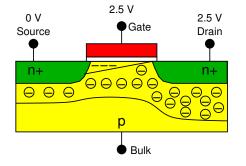
Depletion region widens.


 Carriers in channel repelled to source.

MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects Homework

Body effect as a function of V_{BS}

Linear region: V_{GS} high and V_{DS} moderately high



 Slight deformation of channel due to widening depletion region around reverse-biased P–N junction. Linear mode current–voltage relationship for long-channel device

Given:
$$V_{DS} \leq V_{GS} - V_T$$

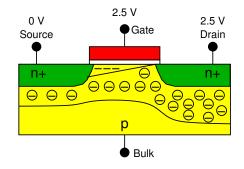
 $I_D = k'_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$
 $k'_n = \mu_n C_{ox} = \frac{\mu_n \epsilon_{ox}}{t_{ox}}$

- k'_n : Process transconductance.
- Cox: Oxide capacitance.
- μ : Carrier mobility.
- W: Transistor width.
- L: Transistor length.
- ϵ_{Si} : Permittivity.
- t_{ox}: Oxide thickness.

Saturation: V_{GS} high and V_{DS} very high

 Pinch-off due to widening depletion region around reverse-biased P–N junction.

MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects


Saturation mode current-voltage relationship for long-channel device

Given:
$$V_{DS} \ge V_{GS} - V_T$$

 $I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$

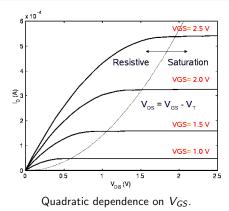
Robert Dick

Digital I

Saturation: V_{GS} high and V_{DS} very high

- Pinch-off due to widening depletion region around reverse-biased P-N junction.
- Decreased channel length → some increase in current.

MOSFET threshold voltage MOSFET operating region MOSFET short channel effect

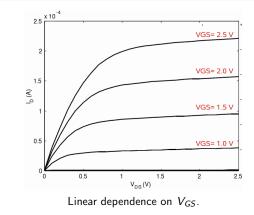

Saturation mode current-voltage relationship for long-channel device considering channel length modulation

Given:
$$V_{DS} \ge V_{GS} - V_T$$

 $I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$
 $I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$

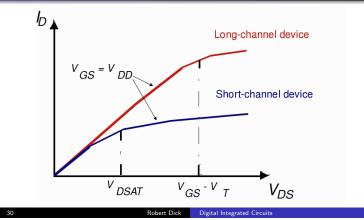
- Channel length decreases with high V_{DS} due to expanding depletion region.
- λ : Empirical constant inversely related to channel length.

MOSFET operating regions MOSFET short channel effects

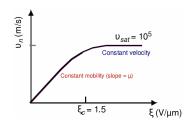

Current-voltage relationship for long-channel devices

Robert Dick Digital Integrated Circ

MOSFET operating regions MOSFET short channel effects

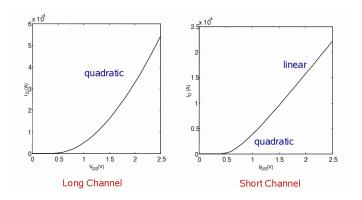

Current-voltage relationship for short-channel devices

Robert Dick Digital Integrated Circu


MOSFET operating regions MOSFET short channel effects

Current-voltage relationship for long- and short-channel devices

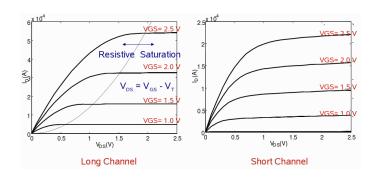
MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects


Velocity saturation

- Charge carriers move randomly, with a net drift velocity.
- What happens when drift velocity approaches particle velocity?

MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects

V_{GS} dependence for long- and short-channel devices

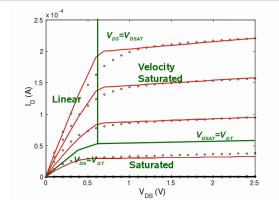


MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects Homework

Robert Dick

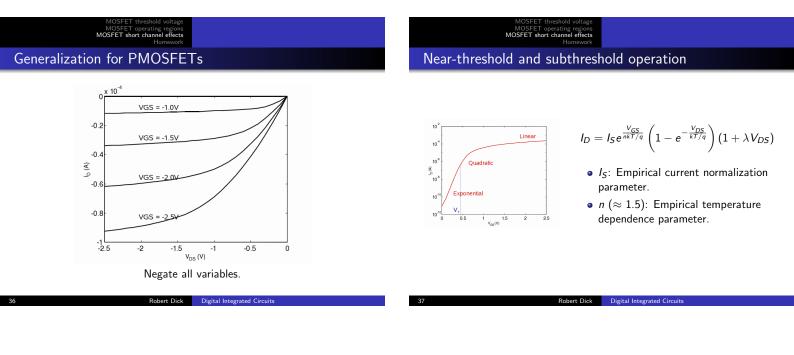
Digital Inte

V_{DS} dependence for long- and short-channel devices


MOSFET operating reg MOSFET short channel eff

Unified model

$$I_D = \begin{cases} 0 & \text{if } V_{GT} \leq 0 \text{ and} \\ k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) & \text{if } V_{GT} \geq 0. \end{cases}$$
$$V_{min} = \min \left(V_{GT}, V_{DS}, V_{DSAT} \right)$$
$$V_{GT} = V_{GS} - V_T$$
$$V_T = V_{T0} + \gamma \left(\sqrt{|-2\Phi_F + V_{SB}|} - \sqrt{|2\Phi_F|} \right)$$


MOSFET operating regions MOSFET short channel effects

Quality of unified model

Dots are from detailed simulation, line is for unified model.

Robert Dick Digital Integrated Circ

MOSFET threshold voltage MOSFET operating regions MOSFET short channel effects

Subthreshold slope

- I_D clearly depends exponentially on V_{GS} .
- Define the slope factor, S, as the change in V_{GS} for I_D to change by $10 \times .$
- From the subthreshold current expression, can solve for S.

$$S = n\left(\frac{kT}{q}\right)\ln\left(10\right)$$

MOSFET operating regions MOSFET short channel effects

Simplified resistance-based model

- Sometimes, static behavior is sufficient.
- Can model on device as resistor.
- $\bullet\,$ Off devices with ∞ resistance.

MOSEET of

MOSFET operating regions summary

- Sub-threshold
 - Weak inversion.
 - $V_{GS} \leq V_T$.
 - I_D exponential in V_{GS} .
 - I_D linear in V_{DS}.
- Linear or resistive: Strong inversion.
 - $V_{GS} \geq V_T$.
 - $V_{DS} \leq V_{DSAT}$.
- Saturated: Strong inversion but pinch-off or velocity saturation.

Digital Integrated Cir

- $V_{GS} \geq V_T$.
- $V_{DS} \ge V_{DSAT}$.
- Approximately constant current.

MOSEET of

Summary

- Physics allows understanding of MOSFET channel inversion and other behaviors.
- Some physical parameters can be difficult to directly measure, so empirical model often used.
- S Threshold voltage is important, and can be statically and dynamically varied.
- MOSFETs have regions of operation decided by V_{DS}.
- Sehaviors vary from long-channel to short-channel devices.
- Iso For manual analysis, a region-based model can be used.

el effects Announcement: ECE Faculty Candidate Seminar

Subthreshold operation can enable very low power consumption, at cost of low performance.

rt Dick Digital Integrated C

MOSFET s

Upcoming topics

- Fabrication.
- Transistor dynamic behavior.
- Interconnect.

- Professor Leung Tsang, Department of Electrical Engineering, University of Washington
- Electromagnetic Simulations of Signal Integrity in Interconnects: Effects of Multiple Vias and Surface Roughness
- Wednesday, September 18, 2013

MOSFET operati MOSFET short chan

- 9:30-10:30
- Johnson Rooms 3rd floor Lurie

Homework assignment

• 24 September: Read Section 2.1, 2.2, and 1.3.1 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, second edition, 2003. Really! You will be confused on Tuesday, otherwise.

• 24 September: Homework 1.