	Most confusing points for the week Diodes Homework
Digital Integrated Circuits – EECS 312	Policy on confusing points
http://robertdick.org/eecs312/	
Teacher: Robert Dick Office: 2417-E EECS Email: dickrp@umich.edu Phone: 734-763-3329 Cellphone: 847-530-1824 $\mathbf{F}_{1} = 1_{1} \mathbf$	 If it doesn't make sense, I will either cover it in more detail right away, indicate when it will be covered in detail, or invite you to office hours.
	3 Robert Dick Digital Integrated Circuits
Most confusing points for the week Homework Why and when does an NMOS-based consume more power than a CMOS inverter?	Most confusing points for the week Didds Homework What is leakage power consumption? What is dynamic power consumption?
 If R is big, low→high output transition is slow. If R is slow, constant power consumption whenever input is high. 	 Subthreshold leakage: not a perfect switch at V_t. Gate leakage. Dynamic power.
Derive and explain.	Derive and explain.
Robert Dick Digital Integrated Circuits	5 Robert Dick Digital Integrated Circuits

ost confusing points for the week

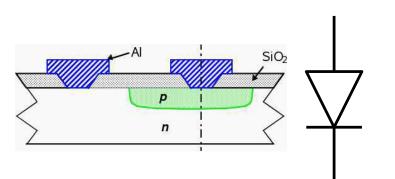
What is the difference between a source and drain?

- Source is the side the charge carriers for the MOSFET come from.
- Drain is the side to which the charge carriers go.
- Key question: Which terminal has a higher voltage and which terminal has a lower voltage?

Derive and explain.

		Di
		lome

Why diodes?


• In the process of building MOSFETs, we accidentally make diodes.

odes vork

- Must understand their properties.
- What we learn about device physics here will help us understand MOSFETs in later lectures.

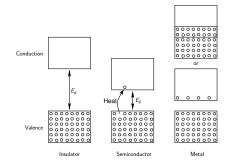
Diodes Homework

Diode physical structure

Nost confusing points for the week Diodes

Step-by-step diode explanation

- Dope regions with donors and acceptors.
- N- and P-doped regions are in contact.
- Oiffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.
- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region


Robert Dick Digital Integrated Circuits

Step-by-step diode explanation

- Ope regions with donors and acceptors.
- In and P-doped regions are in contact.
- O Diffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.
- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region with mobile carriers — sudden increase in current!

Diode Homework

Material properties

- Electron mobility μ_n is a bit over twice that of hole μ_p .
- Units are ^{cm²}/_{Vs}.

Dic Homev

Example dopants

	5	6	7	8
	B	C	N	(
	13 Al	14 Si	15 P	1
o	31	32	33	3
n	Ga	Ge	As	S
_	40	50	F 1	-

Example donor: As.

• Example acceptor: B.

Robert Dick Digital Integrated Ci

Diodes

What are the electrons and holes we have been discussing?

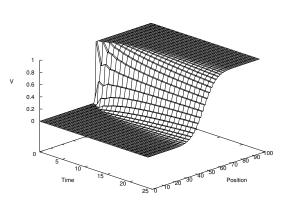
- We mean only electrons in the conduction band, not the valence band.
- We mean only holes in the valence band, not the conduction band.
- The conduction band is mostly empty for a semiconductor.
- The valence band is mostly full for a semiconductor.

Step-by-step diode explanation

- Ope regions with donors and acceptors.
- In and P-doped regions are in contact.
- O Diffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.
- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region with mobile carriers — sudden increase in current!

Diffusion equation

$$\frac{\partial \phi\left(\vec{r},t\right)}{\partial t} = \nabla \cdot \left(D\left(\phi,\vec{r}\right)\nabla \phi\left(\vec{r},t\right)\right)$$


- \vec{r} : location
- t: time
- $\phi(\vec{r}, t)$: density
- $D(\vec{r}, t)$: diffusion coefficient
- ∇ : vector differential operator

If D is constant,

$$rac{\partial \phi\left(ec{r},t
ight)}{\partial t}=D
abla^{2}\phi\left(ec{r},t
ight)$$

Robert Dick Digital Integrated Circ

Diffusion example

Derive and explain. Note: Python is awesome.

Step-by-step diode explanation

- Ope regions with donors and acceptors.
- In and P-doped regions are in contact.
- Oiffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.
- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region with mobile carriers sudden increase in current!

Most confusing points for the week Diodes Homework	
Junction depletion	
p p p p p p p p p p p p p p p p p p p	n (a) Current flow.
Charge P Density +	(b) Charge density.
Electrical \$	(c) Electric field.
Potential V -W1 W	(d) Electrostatic potential.

	-
Most confusing points for the week Diodes Homework	
Drift velocity	

- The drift velocity $v_d = \mu \xi$, where μ is the mobility and ξ is the electric field.
- Net velocity must be small compared to particle random motion velocity for this to hold more on this soon.

Robert Dick Digital Integrated Circuit

Step-by-step diode explanation

- Ope regions with donors and acceptors.
- In and P-doped regions are in contact.
- O Diffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.
- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region with mobile carriers — sudden increase in current!

Built-in potential

$$\Phi_0 = \Phi_T \ln \left[\frac{N_A N_D}{n_i^2} \right] \tag{1}$$
$$\Phi_T = \frac{kT}{2} \tag{2}$$

 $V_D(V)$

(b) On a logarithmic scale (forward bias).

• n_i: intrinsic charge carrier concentration.

q

Robert Dick Digital Integrated Circ

- N_{x} : acceptor and donor concentrations.
- k: Boltzmann constant
- T: temperature

Diode operation

• q: elementary charge

Step-by-step diode explanation

- Ope regions with donors and acceptors.
- In and P-doped regions are in contact.
- O Diffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.
- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region with mobile carriers — sudden increase in current!

using points for the week

Diode current

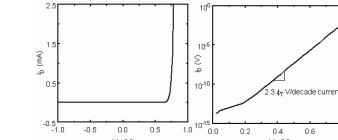
$$I_D = I_S \left(e^{\frac{V_D}{\phi_T}} - 1 \right)$$

- I_D : diode current
- V_D : diode voltage
- I_S: saturation current constant
- $\phi_T = \frac{kT}{q}$: thermal voltage
 - k: Boltzmann constant
 - T: temperature
 - q: elementary charge

Step-by-step diode explanation

 $V_D(V)$

(a) On a linear scale

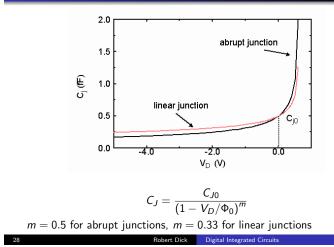

- Dope regions with donors and acceptors.
- In and P-doped regions are in contact.
- Oiffusion according to diffusion equation.
- Drift due to electrical field causes drift-diffusion effects to reach steady-state.

 $I_{D} = I_{S} \left(e^{V_{D} / \phi_{T}} - 1 \right)$

ert Dick

- Left with built-in potential, and depletion region (without mobile charge carriers) near junction.
- Reverse bias (making P voltage lower than N voltage) just makes depletion region bigger.
- Forward bias at first reduces depletion region width, then allows mobile electrons and holes to combine at junction — sudden increase in current!
- At extreme reverse bias, the few mobile carriers that get into the depletion region so fast that they collide with silicon atoms, generating electron-hole pairs, chain reaction fills depletion region with mobile carriers — sudden increase in current!

Robert Dick Digital Integrated Circuits


Diodes

Diodes Avalanche breakdown 0.1 $I_D(A)$ 0 -0.1 -25.0 -15.0 -5.0 0 5.0 $V_D(V)$

Digital Integ

Diodes

Diode capacitance

	Diodes Homework	
Diffusion capacitance		

$$C_{J0} = A_D \sqrt{\frac{\epsilon_{Si} q}{2} \frac{N_A N_D}{N_A + N_D} \frac{1}{\phi_0}}$$

- A_D : area of diode
- ϵ_{Si} : permittivity of silicon
- N_X: carrier density
- $\phi_0 = \phi_T \ln \frac{N_A N_D}{n_i^2}$

 - $\phi_T = \frac{kT}{q}$ n_i : intrinsic carrier concentration

Diodes

Summary of basic device physics and diodes

- What are the electrons, holes, dopants, and acceptors we have been talking about?
- What are diffusion and drift?
- What is "built-in" potential?
- Avalanche breakdown?
- Intrinsic carriers?

Diode Upcoming topics

Diodes Homework

Homework assignment and announcement

bert Dick

- Transistor static behavior.
- Fabrication.
- Transistor dynamic behavior.
- Interconnect.

- 12 September: Section 3.3.2 in J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, second edition, 2003.
- 17 September: Laboratory assignment one.