Digital Integrated Circuits - EECS 312

http://robertdick.org/eecs312/

Lab one challenges

- Learning to use the tools (last Friday).
- Understanding the circuits used in the lab (today).
- A note on the CAD tools market.

Derive and explain.

Robert Dick Digital Integrated Circuits

NMOS inverter schematic

	Lab one sired transistor behavior Homework		
Resistance			
$R = \rho \frac{L}{M}$ $G = \sigma \frac{V}{L}$ • Assuming fixed	7 (1) 7 (2) Height.	$G = \frac{1}{R}$ $\sigma = \frac{1}{\rho}$	(3) (4)
 <i>κ</i>: resistance. <i>ρ</i>: resistivity. <i>L</i>: length. 			

Robert Dick Digital Integrat

- W: width.
- G: conductance.

NMOS inverter simulation results

NMOS→CMOS inverter	Review questions and note
• How does structure change?	e What are divital systems built for
• What impact does transistor width have? Why different widths?	• what are digital systems built in

- How does response change?
- What are advantages?
- What are disadvantages?

Derive and explain.

Digital Integrated Circ

- om?
- What gate properties are required for use in digital systems? Why?
- What have the major effects of process scaling been? What challenges does it face in the future?

Robert Dick Digital Integrated Circuit

• What are the physical structures and symbols of (N/P)MOSFETs? How do they work?

NOT

Lab one Desired transistor behavior

CMOS inverter operation

Robert Dick Digital Integrated Circuits

Robert Dick Digital Integrated Circuit

Desired transistor behavior Homework	
IAND operation	
A A Z	• V _{DD} =0 ● ● ● ● ● ■

blocked

Robert Dick

B=1 blocked

SS

Digital In

	Lab one Desired transistor behavior Homework	
NAND gate		

• Therefore, *NAND* and *NOR* gates are used in CMOS design instead of *AND* and *OR* gates

CMOS transmission gates (switches)

Lab one Desired transistor behavior

CMOS transmission gate (TG)

- NMOS is good at transmitting 0s
 Bad at transmitting 1s
- PMOS is good at transmitting 1s
 Bad at transmitting 0s
- To build a switch, use both: CMOS

Digital Integrated Ci

Desired transistor behavior Homework Other TG diagram	Desired transistor behavior Homework Logic gates vs. TGs	
	 What can each be used to implement? How to decide which to use? 	
23 Robert Dick Digital Integrated Circuits	24 Robert Dick Digital Integrated Circuits	

Upcoming topics

- Diodes.
- Transistor static behavior.
- Transistor dynamic behavior.

Desired trans

Desired transistor behavior Homework

Homework assignment and announcement

• 12 September: Read Section 3.3.2 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.
 Prentice-Hall, second edition, 2003.

• 17 September: Laboratory assignment one.

2