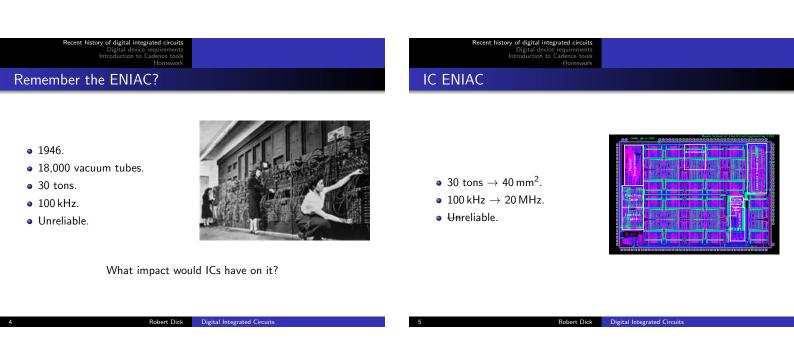

Digital Integrated Circuits – EECS 312

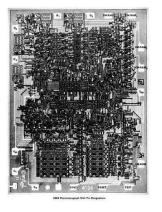
http://robertdick.org/eecs312/



Digital device requirement Introduction to Cadence too

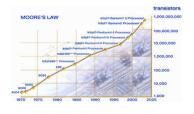
Review

- What are the historical motivations that have driven changes in digital device implementation technologies?
- What is the difference between a combinational and sequential network?
- What substrates (device types) have been used for computation?
- What are the primary advantages of integrated circuits over these competing technologies?


Robert Dick Digital Integrated Circuit

Hor

First microprocessor


- Intel 4004.
- 1971.
- 2,300 transistors.
- 12 mm².
- 740 kHz.
- 12-bit addresses, 8-bit instructions, 4-bit data words.

Digital device require Introduction to Cadence

Trend for one company

- More than ten generations.
- Datapath: 4 bits \rightarrow 64 bits.
- Frequency: 740 KHz \rightarrow 3 GHz.
- In-order, cache-less → Architectural features for common-case performance.
- Uni-processor \rightarrow Chip-multiprocessor (CMP).
- A few thousand transistors \rightarrow Billions of transistors.

Moore's law

• 1965.

Feature size trends

10

Minimum Feature Size (micron)

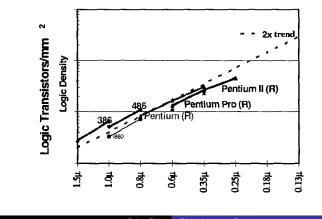
10^{°2}上 1960

1970

1990

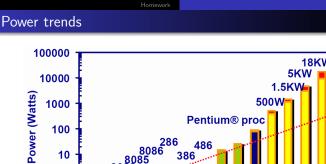
1980 Year

Robert Dick


2000

• The number of transistors in an IC doubles every 18-24 months.

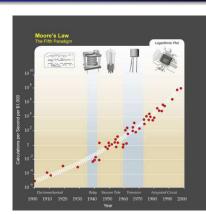
Digital Integrated C

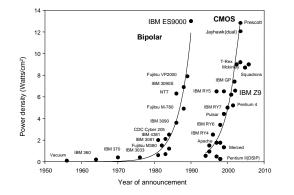

Logic density trends



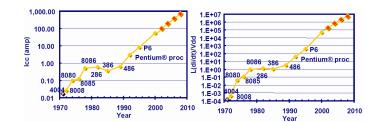
Frequency trends

- Technology scaling \downarrow delay by 30% and \uparrow frequency by 43%.
- Frequency $\propto 1/{
 m Delay}$.

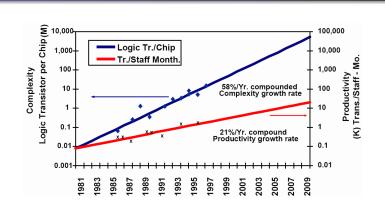



Robert Dick Digital Integrated Cir

Actual trend


Digital device requirement

Power density trends


Digital device requirements

Power supply trends

Recent history of digital integrated ciro Digital device requirem Introduction to Cadence t Homev

Productivity trends

Recent history of digital integrated circuits
Digital device requirements
Introduction to Cadence tools

Impact of power consumption and temperature

- Early ICs used bipolar transistors (BJT).
- Easier to manufacture reliably, faster.
- In the 1970s, integration densities rose.
- Each bipolar device consumes a lot of power.
- Eventually power became the limiting factor in moving from BJT to MOS devices.
- Currently CMOS dominates.
- Complementary MOS logic.
- Likely to dominate for the next decade.

Digital device requirement Introduction to Cadence tool

Power consumption trends

- Initial optimization at transistor level.
- Further research-driven gains at this level difficult.
- Research moved to higher levels, e.g., RTL.
- Trade area for performance and performance for power.
- Clock frequency gains linear.
- Voltage scaling V_{DD}^2 important.

Power consumption in synchronous CMOS

	$P = P_{SWITCH} + P_{SHORT}$	$+ P_{LE}$	4 <i>K</i>			
P _{SWIT}	$C_{CH} = C \cdot V_{DD}^2 \cdot f \cdot A$					
† Р _{ѕно}	$_{RT}=\frac{b}{12}(V_{DD}-2\cdot V_{T})^{3}$	· f · A ·	t			
P_{LE}	$V_{AK} = V_{DD} \cdot (I_{SUB} + I_{GATE})$	$+ I_{JUN}$	$ICTION + I_{GIDL})$			
C : total	switched capacitance	V_{DD} :	high voltage			
f : switc	hing frequency	<i>A</i> :	switching activity			
b: MOS	transistor gain	V_T :	threshold voltage			
t: rise/f	all time of inputs					
$\dagger \; P_{SHORT}$ usually $\; \leq 10\%$ of P_{SWITCH}						

Smaller as $V_{DD} o V_T$

A < 0.5 for combinational nodes, 1 for clocked nodes.

Robert Dick Digital Integrated Circuits

Wiring power consumption

- $\bullet\,$ In the past, transistor power \gg wiring power.
- $\bullet~\mbox{Process scaling} \Rightarrow \mbox{ratio changing}.$

Other (related) design trends

- Smaller transistors.
- Bigger chips (die).
- Lower power consumption.
- Higher clock frequencies.
- More complex designs.
- Lower voltage.

20 Robert Dick Digital Integrated Circuits	21 Robert Dick Digital Integrated Circuits
Recent history of digital integrated circuits Digital device requirements Introduction to Cadence tools Homework	Recent history of digital integrated circuits Digital device requirements Introduction to Cadence tools Homework
Other (related) design trends	Current status
 Smaller transistors. 	
 Bigger chips (die). 	• Feature size: 22 nm.
• Lower power consumption.	 Integration: 700,000,000 transistors.
• Higher clock frequencies.	• Frequency: 2-4 GHz.
• More complex designs.	• Power: 100 W.
• Lower voltage.	Only two of these characteristics have changes in the past few years.
• More cores.	
Some of these trends are slowing.	
22 Robert Dick Digital Integrated Circuits	23 Robert Dick Digital Integrated Circuits
Recent history of digital integrated circuits	Recent history of digital integrated circuits
Digital device requirements Introduction to Cadence tools Homework	Digital device requirements Introduction to Cadence tools Homework
Multi-core processors	Summary of recent IC history
Instruction Fetch and PreDecode and PreDecode	
Instructive Queue 2M/4M eueuQ ambautani	

- Process scaling improves device count, speed.
- Power density increases, eventually limiting further improvements.
- Current move to multi-core.
- Also considering new device technologies, but no clear winners now.

Darrele

4

Rename/Alloc

Schedul

Retirement Unit (ReOrder Buffer)

1000

4

Retirement Unit (ReOrder Buffer)

D

Cache

up to

10.4 Gb/s

FSB

Intel Core 2 Duo Robert Dick Digital Integrated Circuits

Recent history of digital integrated circuit Digital device requirement

Levels of abstraction

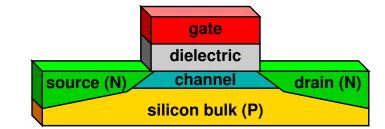
- Hardware-software system.
- Processor.
- Functional unit.
- Logic stage: flip-flop or combinational logic network.
- Gate.
- Transistor or wire.
- Physical material or doping regions.

Derive and explain.

• What allows us to treat a device as digital, and still have the system work?

Digital device require

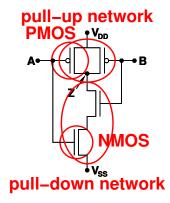
What properties must a "digital" device have?


• Does this imply certain properties for the transfer function?

Robert Dick Digital Integrated Circ

<page-header><section-header><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><figure><section-header>

- Metal Oxide Semiconductor
- Positive and negative carriers
- Complimentary MOS
- PMOS gates are like normally closed switches that are good at transmitting only true (high) signals
- NMOS gates are like normally open switches that are good at transmitting only false (low) signals



CMOS

Digital device requirement

CMOS NAND gate

- NMOS turns on when the gate is high
- PMOS just like NMOS, with N and P regions swapped
- PMOS turns on when the gate is low
- NMOS good at conducting low (0s)
- PMOS good at conducting high (1s)
- Use NMOS and PMOS transistors together to build circuits
 - Complementary metal oxide semiconductor (CMOS)

Digital Integrated (

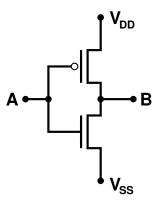
What is this?

Digital Integrated C

Digital device requirements Introduction to Cadence tools

What is this? How would we lay it out?

Digital de


Enough overview: time to start building!

• Transistor static behavior

Transistor dynamic behavior

Upcoming topics

Diodes

Digital device requirement

Non-Credit quiz on material covered so far

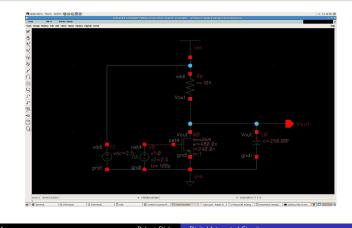
- History of integrated circuits.
 - What happens as a result of process scaling?
 - What have the motivations for major changes in device technology
 - been?
 - What is a digital system?
 - What is a general-purpose computer?
 - What is an embedded system?
 - What is an integrated circuit?
 - What is an ASIC?
 - What is an instruction processor?
 - What is an FPGA?
- What gate properties support use in digital systems?
 - What properties should $V_{out}-V_{in}$ curve have?
 - Describe completeness.

38

Lab one challenges

• Learning to use the tools (Friday).

Digital Introducti


- Understanding the circuits used in the lab (Tuesday).
- A note on the CAD tools market.

Derive and explain.

Digital Integrated Ci

Digital device rec Introduction to Cad

NMOS inverter schematic

OS inve	rter sir	nulat	tion results		
appications Places System 🛛 📾 🖏		,	reji menerimenter othernetic - jan 13.01/30.36.2019 (t	1	= 12.41.AH ∯
2011年1日日の日に2011年2月1日			Tramient Response		[2] Laber
3.0 10 00000					
2.5					
2.0					
1.5-					
1.5					
1.0					
.5					
2.8					
2.5					
2.0					
1.5					
1.0					
.5-					
aoj	2.5		5.0 time (5-60	7/5	Lõo
raph] telezed double-click to bring up amile		0.0	S Caterce Library Man. C noce-investor	C Withold & Analog Dec C Graph Vibration 0 [1]	

Recent history of digital integrated circuits Digital device requirements	
Introduction to Cadence tools	
Homework	

Upcoming topics

• 6 September: Discussion in room 1620 BBB will focus on Lab 1.

Digital In

Robert Dick

• 10 September: MOSFETs.

Homework assignment and announcement

- 5 September: Email topics of interest.
- 10 September: Read Sections 3.1, 3.2, and 3.3.1 in J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
 - Prentice-Hall, second edition, 2003.
- 17 September: Laboratory assignment one.