Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Charge sharin Homework

- Logical effort.
- Homework 3, problem 9 will be moved to Homework 4.
- Review DeMorgan's Laws and gate design.

Dynami
Charg

• f(a) = a.

Examples

- $f(a) = \overline{a}$
- $f(a,b) = a\overline{b}$
- f(a, b) = ab (Check Figure 6-33 in J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.
- Prentice-Hall, second edition, 2003!) • $f(a, b, c) = ab + \overline{b}c$ (try both ways).

Derive and explain.

• If V_D switches in the opposite direction of V_G , the effect of C_{GD} is doubled.

Robert Dick Digital Integrated C

Robert Dick Digital Integrated Circui

• Consider an inverter.

Miller effect

• Model by using a $2C_{GD}$ capacitor to ground.

Dynamic hazards

Robert Dick Digital Integrated Circuit

Eliminating dynamic hazards

• Some approaches allow preservation of multi-level structure • Quite complicated to apply

Robert Dick Digital Integrated Circuits

• Simpler solution - Convert to two-level implementation

Von-idealities DC/SL Dynamic CMOS Charge sharing Homework	Non-idealities DCVSL Dynamic CMOS Charge sharing Homework
Static hazards	Problems with glitches
Still have static hazardsPotential for transient change of output to incorrect value	
1 1 Static 0 1-hazard	 These transitions result in incorrect output values at some times Also result in uselessly charging and discharging wire and gate capacitances through wire, gate, and channel resistances Increase power consumption
$ \begin{array}{c c} 1 & Static \\ 0 & 0 - haz ard \end{array} $	
10 Robert Dick Digital Integrated Circuits	11 Robert Dick Digital Integrated Circuits
New Meditive	Nasidallive
DCVSL Dynamic CMOS Charge sharing	DCVSL DCVSL Dynamic CMOS Charge sharing
Glitches increase power consumption	Detecting hazards
	 The observable effect of a hazard is a glitch A circuit that might exhibit a glitch has a hazard Whether or not a hazard is observed as a glitch depends on relative gate delays Relative gate delays change depending on a number of factors – Conditions during fabrication, temperature, age, etc. Best to use abstract reasoning to determine whether hazards might be observed in practice, under some conditions

12

- Ensure that the function has a term maintaining a 0 output for all $0 \rightarrow 0$ transitions.
- Ensure that the function has a term maintaining a 1 output for all $1 \rightarrow 1$ transitions.
- There are precisely defined algorithms for this, but they build on a knowledge of logic minimization.

- Static-1: $A + \overline{A}$
- Assume SOP form has no product terms containing a variable in complemented and uncomplemented forms
 - Reasonable assumption, if true, drop product term

• Reasonable assumption, if true, drop sum term

Robert Dick

- Assume only one input switches at a time
- Conclusion: SOP has no 0-hazards and POS has no 1-hazards
 - . In other words, if you are doing two-level design, you need not analyze the other form for hazards

Digital Integra

• Synchronous systems

DCVSL

Differential cascode voltage switch logic example

Robert Dick Digital Integrated Ci

XOR-NXOR gate

Differential cascode voltage switch logic response

Digital Integ

NMOS-only wired and

DCVSL

Robert Dick

Robert Dick

Dovst Dynamic CMOS Charge sharing Homework Restorer sizing

Non-idealities DCVSL Dynamic CMOS Charge sharing Homework	
Static vs. dynamic logic	

Robert Dick

Digital Ir

- Static logic relies only on steady-state behavior of system. Eventually the output converges to a correct result.
- Dynamic logic relies on transient behavior and is sensitive to timing. Reliable design is generally trickier. Why use it?
- Static logic requires $(k_P + k_N)$ transistors for k-input gate.
- Dynamic logic requires $k_N + 2$ transistors for k-input gate.

Dynamic logic

CMO

Dynamic logic example

Non-idealities DCVSL Dynamic CMOS Charge sharing Homework	Non-idealities DC/VSL Dynamic CMOS Charge sharing Homework
Dynamic logic operating principles I	Dynamic logic operating principles II
Can only discharge output node once per clock period.	

- Inputs must make only one transition during evaluation.
- Output can be in the high impedance state during and after evaluation.
- Substitution of the second second
- Sequires only $k_N + 2$ transistors.
- Full swing outputs.
- On-ratioed sizing of the devices does not affect the logic levels.
- **③** Reduced load capacitance due to lower input capacitance.

Robert Dick

 Reduced load capacitance due to smaller output loading. no lsc, so all the current provided by PDN goes into discharging CL.

- Power consumption usually higher than static CMOS.
 - Good: No static current.
 - Good: No glitching.
 - Bad: Higher transition probabilities.
 - Bad: More load on clock distribution network.
- $V_M = V_{IH} = V_{IL} = V_{TN}$ so noise margin is low.
- Preds precharge and evaluation cycle.

Non-idealities DCVSL Dynamic CMOS Charge sharing Homework	Non-idealities DCVSL Dynamic CMOS Charge sharing Homework
g topics	Review

- Example problems on recently covered material.
- Latches and flip-flops.

Upcomir

- What are static hazards?
- What problems do hazards cause?
- What is the root cause of static hazards?
- Let's implement a function using DCVSL.

Derive and explain.

Dynamic logic charge leakage

Dynamic CMOS Charge sharing Homeword

Dynamic CMOS Charge sharing Homework

Dynamic logic charge leakage timing diagram

Dynamic CM Charge sha Homew

Preventing charge sharing problems

Dynamic Core Charge sharing Homework

Robert Di

Digital Integrated C

DCVSL Dynamic CMOS Charge sharing Homework

Transition from combinational to sequential circuits

Non-idealities DCVSL Dynamic CMOS Charge sharing Homework	Non-idealities DCVSL Dynamic CMOS Charge sharing Honework
Upcoming topics	Homework assignment

• Sense amplifiers.

43

• A more formal approach to gate sizing.

Robert Dick

Digital Integr

31 October: Read Sections 6.3 and 7.1 in J. Rabaey,
 A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective.* Prentice-Hall, second edition, 2003.

Robert Dick Digital Integrated C

• 7 November: Project 4.