Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Review

- When are the advantages and disadvantages of fixed-voltage charging?
- When are the advantages and disadvantages of fixed-current charging?
- In what situation is each of the following models important? • Ideal.
 - C.
 - RC.
 - RLC.
- What are dI/dt effects? Under what circumstances do they cause the most trouble?

Derive and explain.

Robert Dick Digital Integrated Circuits

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Hornework	Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework
Rent's rule	Fringe vs. parallel plate capacitance
 T = ak^p T: Number of terminals. a: Average number of terminals per block. k: Number of blocks within chip. p: Rent's exponent, ≤ 1, generally around 0.7. 	$\begin{array}{c} & & \\$
4 Robert Dick Digital Integrated Circuits	5 Robert Dick Digital Integrated Circuits

Impact of inter-wire capacitance

Wire resistance

Interconnect:	Rent's rule	and	coupling	; capa	citance
			lmore de	lay mo	odeling
				Logic	design

Interconnect resistance

- $R = \frac{\rho L}{HW}$. Consider fixed-height, fixed- ρ square material, i.e., L/W = 1.

Robert Dick

Digital Integrated Circuits

• $R = \frac{\rho}{H}$.

Material	$ ho$ (Ω m) $ imes$ 10 ⁻⁸
Silver	1.6
Copper	1.7
Gold	2.2
Aluminum	2.7
Tungsten	5.5

Robert Dick Digital Integrated Circuit

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design	Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design
Homework Reducing resistance	Homework
 Higher interconnect aspect ratios Material selection Copper Silicides Carbon nanotubes Structural changes More interconnect layers 3-D integration 	Silicide PolySilicon SiO ₂ n ⁺ p
10 Robert Dick Digital Integrated Circuits	11 Robert Dick Digital Integrated Circuits

Interconnect: Rent's rule a	nd coupling capacitance Elmore delay modeling Logic design Homework
Resistances	

12

Sheet resistance (Ω/\Box)
1,000-1,500
50-150
3–5
150-200
4–5
0.05-0.1

Multi-layer interconnect

Side view of interconnect

Interconnect summary

- It is important to know which interconnect model to use in which situation.
 - Ideal.

 - C. RC.
 - RLC.
- *dI*/*dt* effects are particularly important in power delivery networks.
- Capacitive coupling complicates design.
- Cu and silicides can be used to reduce resistance.

Interconnect: Rent's rule and E	coupling capacitance more delay modeling Logic design Homework
Delay modeling	

- Single-node lumped model inaccurate.
- Full detailed accurate model intractable for manual analysis and slow for automated analysis.
- Elmore delay model permits rapid analysis with often adequate accuracy.

Interconne	ct: Rent's rule and coupling capacitance
	Elmore delay modeling
	Logic design

Elmore delay

Problem definition

- Goal: Determine τ for RC path.
- Note: Source node is implicit.
- C_i: Self-capacitance of node i.
- R_{ii}: Path resistance from source to node *i*.
- R_{ik} : Shared resistance from source to both nodes *i* and *k*.

$$\tau_i = \sum_{k=1}^N C_k R_{ik}$$

Derive and explain.

Special case: RC chains

- Consider π network.
- τ_n = Σⁿ_{i=1} C_i Σⁱ_{j=1} R_j.
 Use homogeneous discretization.
- $\forall_{i=2}^{N} C_i = C_1$

$$\tau = \sum_{k=1}^{N} CR_{nk}$$
$$= \frac{L}{N} c \frac{L}{N} r \frac{N(N+1)}{2}$$
$$= rcL^2 \frac{N+1}{2N}$$

What if $N \to \infty$? $\tau \to rcL^2/2$.

Flm

Underlying continuous physical model

 $cr\frac{\delta V}{\delta t} = \frac{\delta^2 V}{\delta x^2}$

Elmore delay m

Response to step function over time and space

Robert Dick

Digital Integrated C

Power delivery network considerations

Id coupling co. Elmore delay mo Logic

• IR drop.

• dI/dt effects.

- Location of parasitic inductance.
- Methods to correct power delivery network non-idealities.

Robert Dick Digital Integrated Circ

Simplifying assumptions	Elmore delay summary
Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Interconnect: Rent's rule and coupling capacita Elmore delay mode Logic de Homev

• Ignore wire RC delay when wire delay does not much exceed that of the driving gate, i.e.,

$$L_{crit} \gg \sqrt{rac{t_{p,gate}}{0.38rc}}$$

- Ignore wire RC when rise time greater than RC delay.
- Ignore for high-resistance wires: R > 0.2C.
- Ignore when time of flight is large compared to rise or fall time: $t_{rise, fall} < 2.5 t_{flight}$.

	Homework	
Imore delay	summary	

- Pick simplest model for intended purpose: C, RC, or RLC.
- Capacitive coupling complicates timing analysis.
- Transition direction impacts C magnitude in simplified ground-cap model.
- Learn Elmore delay. It is a good first-order approximation of network delay.

Digital Ir

Eimore delay modeling Logic design Homework	
---	--

Static CMOS design styles and components

- Logic gates
- Switch-based design
- MUX
- DEMUX
- Encoder
- Decoder

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Hornework	Switch-based design
Transistor sizing review	

- Goal: equal au for worst-case pull-up and pull-down paths.
- Observations
 - Adding duplicate parallel path halves resistance.
 - Adding duplicate series path doubles resistance.
 - Doubling width halves resistance.
- Consider logic gate examples.

Interconnect: Kent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Interconnect: Kent's rule and couping capacitance Elmore delay modeling Logic design Homework	Switch-based design
CMOS transmission gate (TG)	Other TG diagram	
e Kat Market States and the second seco	1 Cont Dick	Image: Windowski state
Interconnect: Kent state and coupring capacitance Elmore delay modeling Logic design Homework	mterconnect. Kent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Switch-based design
Multiplexer (MUX) definitions	MUX functional table	

- Also called *selectors*
- 2ⁿ inpu

33

- One output

U	caneu	Selectors	
in	puts		

- *n* control lines

Robert Dick

Digital Integrated C

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Switch-based design
MUX truth table	

Robert Dick

Digital Ir

I_1	I_0	С	Ζ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

nd coupling capacitance Elmore delay modeling Logic design Homework MUX using logic gates

• *I*₀ • 11 • οZ • 13

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework

Switch-based design

MUX using TGs

Robert Dick Digital Integrated Cir

Switch-based design

Digital Integrated Circuit

MUX

nd coupling capacitance Elmore delay modeling Logic design Homework Hierarchical MUX implementation I₀ -0 8:1 4:1 I 1 mux 1 mux I_2 2 ${}^{3}S_{1}S_{0}$ Ι₃ Ζ 0 2:1 mux I_4 0 4:1 S I 5 1 mux I 6 2 $3S_{1}S_{0}$ С A

Robert Dick

Digital Integrat

Robert Dick

bert Dick

Digital Integrated C

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Switch-based design
MUX example	

 $F(A, B, C) = \sum (0, 2, 6, 7)$ = $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$

Robert Dick Digital Integrated C

Therefore,

 $\overline{A}\overline{B} \to F = \overline{C}$ $\overline{A}B \to F = \overline{C}$ $A\overline{B} \to F = 0$ $AB \to F = 1$

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Switch-based design	Interconnect: Rent's rule and coupling ca Elmore delay I I	pacitance modeling jić design iomework
Truth table		Lookup table implemer	itation
A B 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} $	4:1 MUX 51 S0

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework
Examples
Instead of flying through a bunch of slides, let's try examples.
• <i>f</i> (<i>a</i>) = <i>a</i> .
• $f(a) = \overline{a}$

• Logic gate, transmission gate, and pass transistor design each have applications.

Digital Integrated Circuit

• MUX-based design provides a good starting point for transmission gate and pass transistor based design.

- $f(a, b) = a\overline{b}$
- f(a, b) = ab (Check Figure 6-33 in J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, second edition, 2003!)

B

t Dick Digital Integrated C

A

• $f(a, b, c) = ab + \overline{b}c$ (try both ways).

Derive and explain.

Interconnect: Rent's rule and coupling capacitance Elmore delay modeling Logic design Homework	Switch-based design	Interconnect: Rent's rule and coupling capacitanc Elmore delay modelin Logic desig Homewor
Upcoming topics		Homework assignment

- Alternative logic design styles.
- Latches and flip-flops.
- Memories.

- - 22 October: Read sections 4.4.1, 4.4.4, and 9.3.3 in J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, second edition, 2003.
 - 24 October: Read sections 6.2.2 and 6.2.3 in J. Rabaey,
 - A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, second edition, 2003.
 - 25 October: Lab 3.
 - 29 October: Homework 3.