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Review

When are the advantages and disadvantages of fixed-voltage
charging?

When are the advantages and disadvantages of fixed-current
charging?

In what situation is each of the following models important?

Ideal.
C .
RC .
RLC .

What are dI/dt effects? Under what circumstances do they
cause the most trouble?

Derive and explain.
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Rent’s rule

T = akp

T : Number of terminals.

a: Average number of terminals per block.

k : Number of blocks within chip.

p: Rent’s exponent, ≤ 1, generally around 0.7.
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Fringe vs. parallel plate capacitance

Plot of Ctotal for different gap ratios.
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Inter-wire capacitance
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Impact of inter-wire capacitance
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Wire resistance

R = ρL
HW .

Consider fixed-height, fixed-ρ square material, i.e., L/W = 1.

R = ρ
H .
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Interconnect resistance

Material ρ (Ω m) ×10−8

Silver 1.6
Copper 1.7

Gold 2.2
Aluminum 2.7
Tungsten 5.5
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Reducing resistance

Higher interconnect aspect ratios

Material selection

Copper
Silicides
Carbon nanotubes

Structural changes

More interconnect layers
3-D integration
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Silicides

11 Robert Dick Digital Integrated Circuits

Interconnect: Rent’s rule and coupling capacitance
Elmore delay modeling

Logic design
Homework

Resistances

Material Sheet resistance (Ω/�)

n- or p-well diffusion 1,000–1,500
n+ or p+ diffusion 50–150

silicided n+ or p+ diffusion 3–5
doped polysilicon 150–200

doped silicides polysilicon 4–5
Aluminum 0.05–0.1
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Multi-layer interconnect
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Side view of interconnect
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Interconnect summary

It is important to know which interconnect model to use in which
situation.

Ideal.
C .
RC .
RLC .

dI/dt effects are particularly important in power delivery
networks.

Capacitive coupling complicates design.

Cu and silicides can be used to reduce resistance.
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Delay modeling

Single-node lumped model inaccurate.

Full detailed accurate model intractable for manual analysis and
slow for automated analysis.

Elmore delay model permits rapid analysis with often adequate
accuracy.
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Elmore delay

Problem definition

Goal: Determine τ for RC path.

Note: Source node is implicit.

Ci : Self-capacitance of node i .

Rii : Path resistance from source to node i .

Rik : Shared resistance from source to both nodes i and k .

τi =
N∑

k=1

CkRik

Derive and explain.
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Special case: RC chains

Consider π network.

τn =
∑n

i=1 Ci
∑i

j=1 Rj .

Use homogeneous discretization.

∀Ni=2Ci = C1

τ =
N∑

k=1

CRnk

=
L

N
c
L

N
r
N(N + 1)

2

= rcL2
N + 1

2N

What if N →∞? τ → rcL2/2.
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Underlying continuous physical model

cr
δV

δt
=
δ2V

δx2
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Response to step function over time and space
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Power delivery network considerations

IR drop.

dI/dt effects.

Location of parasitic inductance.

Methods to correct power delivery network non-idealities.
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Simplifying assumptions

Ignore wire RC delay when wire delay does not much exceed that
of the driving gate, i.e.,

Lcrit �
√

tp,gate

0.38rc
Ignore wire RC when rise time greater than RC delay.

Ignore for high-resistance wires: R > 0.2C .

Ignore when time of flight is large compared to rise or fall time:
trise,fall < 2.5tflight .
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Elmore delay summary

Pick simplest model for intended purpose: C , RC , or RLC .

Capacitive coupling complicates timing analysis.

Transition direction impacts C magnitude in simplified
ground-cap model.

Learn Elmore delay. It is a good first-order approximation of
network delay.
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Switch-based design

Static CMOS design styles and components

Logic gates

Switch-based design

MUX

DEMUX

Encoder

Decoder
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Switch-based design

Transistor sizing review

Goal: equal τ for worst-case pull-up and pull-down paths.

Observations

Adding duplicate parallel path halves resistance.
Adding duplicate series path doubles resistance.
Doubling width halves resistance.

Consider logic gate examples.
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CMOS transmission gate (TG)

B

C

C

A
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Switch-based design

Other TG diagram
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Switch-based design

Multiplexer (MUX) definitions

Also called selectors

2n inputs

n control lines

One output
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Switch-based design

MUX functional table

C Z

0 I0
1 I1
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Switch-based design

MUX truth table

I1 I0 C Z

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Switch-based design

MUX using logic gates

A B

I0

I1

I2

I3

Z
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Switch-based design

MUX using TGs

I3

I0

I2

I1

AA BB

ZZ
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Switch-based design

MUX

2:1
C

C

C

C

A

B

D
A

B
C C

D
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Switch-based design

Hierarchical MUX implementation
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Switch-based design

Alternative hierarchical MUX implementation
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Switch-based design

MUX examples

2:1

m ux

I
0

I
1

A

Z

Z = AI0 + AI1
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Switch-based design

MUX examples

I
0

A

I
1

I
2

I
3

B

Z
4:1

m ux

Z = AB I0 + ABI1 + AB I2 + ABI3
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Switch-based design

MUX examples

I
0

A

I
1

I
2

I
3

B

Z8:1

m ux

C

I
4

I
5

I
6

I
7

Z = AB C I0 + ABCI1 + ABC I2 + ABCI3+

AB C I4 + ABCI5 + ABC I6 + ABCI7
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Switch-based design

MUX properties

A 2n : 1 MUX can implement any function of n variables

A 2n−1 : 1 can also be used

Use remaining variable as an input to the MUX

42 Robert Dick Digital Integrated Circuits

Interconnect: Rent’s rule and coupling capacitance
Elmore delay modeling

Logic design
Homework

Switch-based design

MUX example

F (A,B,C ) =
∑

(0, 2, 6, 7)

= AB C + ABC + ABC + ABC
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Truth table

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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Switch-based design

Lookup table implementation

8:1

MUX

1

0

1

0

0

0

1

11

0

1
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3

4

5

6

77 S2 S1 S0

AA BB CC

FF
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Switch-based design

MUX example

F (A,B,C ) =
∑

(0, 2, 6, 7)

= AB C + ABC + ABC + ABC

Therefore,

AB → F = C

AB → F = C

AB → F = 0

AB → F = 1
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Truth table

A B C F
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

F=C
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Switch-based design

Lookup table implementation

S1 S0

AA BB

4:1

MUX

0

1

2

33

00

11

FF
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Switch-based design

Logic design summary

Logic gate, transmission gate, and pass transistor design each
have applications.

MUX-based design provides a good starting point for
transmission gate and pass transistor based design.
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Examples

Instead of flying through a bunch of slides, let’s try examples.

f (a) = a.

f (a) = a

f (a, b) = ab

f (a, b) = ab (Check Figure 6-33 in J. Rabaey, A. Chandrakasan,

and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003!)

f (a, b, c) = ab + bc (try both ways).

Derive and explain.
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Switch-based design

Upcoming topics

Alternative logic design styles.

Latches and flip-flops.

Memories.
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Homework assignment

22 October: Read sections 4.4.1, 4.4.4, and 9.3.3 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective.
Prentice-Hall, second edition, 2003.

24 October: Read sections 6.2.2 and 6.2.3 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective.
Prentice-Hall, second edition, 2003.

25 October: Lab 3.

29 October: Homework 3.
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