Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

GSI:

Office:

Email:

Shengshou Lu

luss@umich.edu

2725 BBB

Teacher: Robert Dick Office: 2417-E EECS Email: dickrp@umich.edu

734-763-3329 Phone: Cellphone: 847-530-1824

Exams

• Midterm exam: 10 October

• Final exam: 1:30-3:30 20 December

Grading and written feedback

- Solutions will be posted.
- Help with assignments and projects available during office hours and discussion sessions.
- I may give you a supplementary reading assignment, but after you have read the required material it is fine to sit in my office doing problems and asking questions when you get stuck.

People

Instructor Robert Dick

http://robertdick.org/ dickrp@umich.edu

1010 DOW Lecture

Tuesdays and Thursdays, 14:30-16:00

Office hours: 2417-E EECS

> Tuesdays and Thursdays, 16:00-17:00 plan to extend when demand is high

Teaching assistant Shengshuo Lu

Email: luss@umich.edu

Discussion 1303 EECS

Fridays, 12:30-13:30

Office Hours 2725 BBB

> Mondays, 10:30-12:30 Thursdays, 17:30-19:30

Robert Dick Digital Integrated Circuits

Purpose of Course and Course Objectives I

- Analyze and design combinational and sequential digital circuits in various logic families.
- Learn trade offs among styles, e.g., noise immunity vs. speed and density vs. static power.
- Teach students to analyze the effect of interconnect parasitics on circuit performance.
- Learn common memory structures (ROM, SRAM, and DRAM) will be described.
- Learn to use SPICE and Cadence schematic capture tools.
- Introduce students to important future trends in large-scale digital circuit design, including manufacturability issues and barriers to device scaling.

Grading philosophy

- No fixed number of As, Bs, etc. for the class.
- If the class performs well, there will be more As than average.
- The converse is also true.
- When you help classmates, you needn't have much concern about undermining your own course grade.

The line between collaboration and copying I

- Any student may discuss the problem and design ideas with any other students. However, students are individually responsible for preparing, evaluating, and reporting on their designs.
- Share ideas and discuss assignments.
- Do not copy the schematics, simulation results, or reports of other students.
- If you feel that you must do this, report it openly so credit can be appropriately adjusted (removed).
- Continued participation in the course implies that you understand that discussion is fine but claiming credit for copied work is cheating.

Circuits: A Design Perspective.

Prentice-Hall, second edition, 2003.

Textbook

Other references

- Ben G. Streetman. Solid State Electronic Devices. Prentice-Hall, NJ, fifth edition, 2005.
- Andrei Vladimirescu. The SPICE Book. John Wiley & Sons, second edition, 1994.
- Adel S. Sedra and Kenneth C. Smith. Spice for Microelectronic Circuits.

Harcourt School, third edition, 1991.

• Ivan Sutherland, Robert F. Sproull, and David Harris. Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann, first edition, 1999.

Four homework assignments

- A week and a half allowed for each.
- Homework due at the beginning of lecture.
- 5% penalty if late on same day.
- 10% penalty per day for late assignments.
- No credit after assignment covered in class or discussion session.

J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated

- Penalty is gradual avoid all-nighters.
 - The goal is competence, not exhaustion.
- Maximum of two late days per assignment to permit timely release of solutions.

Four laboratory projects and a final project

- Two weeks allowed for each laboratory project.
- Laboratory assignments have 10% per day late penalty.
- Three and a half weeks allowed for the final project.

Grade Weightings

15% Midterm exam: Final exam: 30% Laboratory assignments: 20% Final project: 20% Homework: 10% Research on special topic: 5%

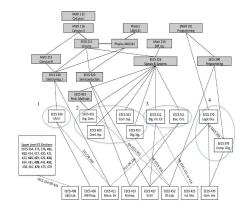
On lectures and notes

- I will use lecture slides and post them.
- However, the slides just provide context and make sure the most important topics are covered.
- I will diverge based on questions and current events.
- Therefore, you should see the on-line lecture notes, and take additional notes in class.

Context for digital integrated circuit design

Integrated circuits are everywhere

Cars, environmental control, computers, communication, etc.


What is a digital syste

What distinguishes the two?

- How are "digital" components built?
- This course sits between the analog world and the digital view we would like to superimpose on it to simplify design. It bridges physics and computation.
- You will learn the fundamentals of designing digital integrated circuits from individual transistors.

Administrative details Context for digital integrated circuit design

Where EECS 312 fits in one example curriculum

Context for digital integrated circuit design

What is a digital system?

What is a digital system?

- List possible digital system components on paper.
- List examples of non-digital systems or components.

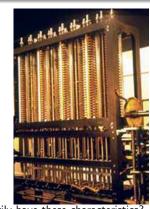
What is a digital system

Example digital systems

- Combinational systems
- Sequential systems
- Instruction processors
- Reconfigurable logic

Administrative details Context for digital integrated circuit design

Administrative details Context for digital integrated circuit design


What good are ICs?

- Are there alternative ways to build digital systems?
- Historical perspective will help.

Context for digital integrated circuit design

Mechanical computers

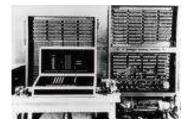
- Babbage difference engine
- 1822
- 4,000 components
- Three tons
- 31 digits
- Advantages: Automatic
- Disadvantages: Slow, expensive, inflexible, big

Do mechanical computers necessarily have these characteristics?

Robert Dick Digital Integrated Circuits

Mechanical computational aids

- 500 BC-1940 AD
- Advantages: required limited intellectual capital investment
- Disadvantages: manual



Context for digital integrated circuit design

What is a digital sys What good are ICs?

Programmable, electro-mechanical computers

- Konrad Zuse's Z3
- 1941
- Floating point
- Relay-based
- Zuse also designed a high-level programming language, Plankalkül
- 5-10 Hz
- Turing complete, i.e., can simulate a universal Turing machine - a computer that can run different programs.

Modern digital computer

What is a digital sys What good are ICs?

What is a digital sys What good are ICs?

Electronic computer

- Electrical numerical integrator and computer
- 1946
- 18,000 vacuum tubes
- 30 tons
- 100 kHz
- Unreliable

• Over 1,000,000,000 transistors

• 1-3 GHz

Administrative details Context for digital integrated circuit design

Modern embedded digital computer

Administrative details Context for digital integrated circuit design

What changed?

- Tens of thousands of transistors
- μW when sleeping

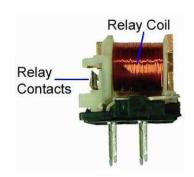
A few MHz

- As big as a fingernail
- Smart enough to save kids from SIDS or keep bridges from falling down?

• Intellectual and physical capital: Without today's computers, building tomorrow's computers would be impossible

• Architecture: Caches, out-of-order execution, multi-processors

Devices!


Context for digital integrated circuit design

What is a digital syst What good are ICs?

Electro-mechanical relays

Compared to vacuum tubes,

- large and
- slow.

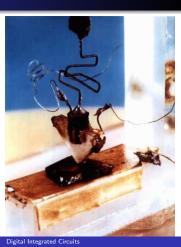
Context for digital integrated circuit design

What is a digital sys What good are ICs?

Vacuum tubes

Invented in 1915 by Irving Langmuir. Compared to transistors,

- large,
- slow,
- unreliable, and
- high power.

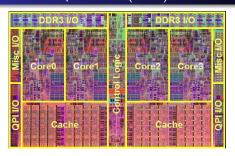


What is a digital sys What good are ICs?

Discrete transistors

Invented in 1947 by John Bardeen Compared to integrated transistors.

- large and
- reliable.

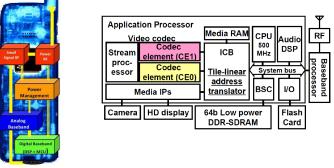

What is a digital sys What good are ICs?

Integrated circuit

Independently invented in 1959 by Jack Kilby and Robert Noyce Allows a lot of transistors to be packed into a small space - and that makes all the difference in the world.

Intel Nehalem Microprocessor (2009)

- 731,000,000 transistors.
- 4 cores.

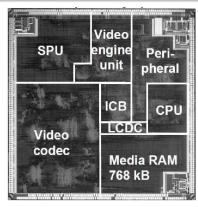

• 3.6 GHz.

• 8 MB cache.

• 45 nm.

Courtesy of Mark Bohr at Intel.

Robert Dick Digital Integrated C


Courtesy of Renesas.

Main IC use: embedded systems

Robert Dick Digital Integrated Circuit

Context for digital integrated circuit design

Cellphone media application chip

Courtesy of Renesas.

Robert Dick Digital Integrated Circuits

matters so much for embedded systems "integrated"

How are ICs designed and fabricated?

Goal of the course: Understand how to use individual devices to build

- combinational logic,
- sequential logic, and
- complex architectures based on combinational and sequential components

under constraints on

- reliability,
- performance,
- design time,
- testing cost,
- area, and
- power consumption.

How are ICs designed and fabricated?

Trends

- Embedded.
- Multicore.
- Power density.
- Scaling limits.

Course topics I

- Course overview and administrative details
- Context for digital integrated circuit design
- Transistor static behavior
- Transistor dynamic behavior
- Fabrication
- SPICE models
- CMOS inverters
- Inverter dynamic behavior
- Inverter power consumption
- CMOS gates
- Pass transistor logic

Course topics III

- SRAM
- DRAM
- Future trends

Homework assignment

- Due 5 September.
- Read the course information handout.

- - E.g., "Why use multicore processors instead of just making unicore processors faster?"

Email this to me at dickrp@umich.edu.

Course topics II

- Transmission gates
- Logical effort
- Oynamic logic
- Domino logic
- np-CMOS
- Interconnect behavior
- Interconnect design
- Latches
- Flip-flops
- Other sequential elements
- Scaling and process variation
- ROM

Upcoming topics

- 5 September:
 - Overview and history of integrated circuits.
 - Integrated circuits in the context of digital system design.
 - Transistor static behavior.

- Read Sections 1.1 and 1.2 in J. Rabaey, A. Chandrakasan, and
 - B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, second edition, 2003.
- List specific integrated circuit related topics you are interested in that you would like to see covered in the course