Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Office: Email: Phone: Cellphone:

Robert Dick 2417-E EECS dickrp@umich.edu 734–763–3329 847–530–1824 GSI: Shengshou Lu Office: 2725 BBB Email: luss@umich.edu

Review

- Design a non-trivial logic gate.
- What happens to inverter delay as the driving MOSFET widths are increased?
- What happens to inverter delay as the driven MOSFET widths are increased?
- What impact does non-instantaneous rise/fall time have on the propagation delay for the subsequent logic stage?

Lab 3

- Input inverters.
- Implications of sizing on energy consumption.

Derive and explain.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Lecture plan

- 1. Inverter sizing
- 2. Impact of input voltage function on energy consumption
- 3. Interconnect modeling
- 4. Homework

Impact of input voltage function on energy consumption Interconnect modeling Homework

Dependence of delay on width (R)

- Fix $R_L C_L$ and vary W.
- Eventually, self-loading dominates.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Inverter chain delay optimization

Given

- Size (width) of first inverter in chain,
- Driven load,
- Transistors are minimal length, and
- $W_{P}/W_{n} = 2$ approximately balances t_{pHL} and t_{pLH} .

Find

- Optimal number of inverters in chain and
- Optimal size (width) of each inverter

to minimize chain delay.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Intuition

- Given two inverters (first fixed) and a large load (C_L) , how should the second be sized to minimize delay?
- $C_{G2} = C_{G1}$ (minimal)?
- $C_{G2} > C_L?$
- $C_{G2} = C_L?$
- Some other setting?
- Why?

Impact of input voltage function on energy consumption Interconnect modeling Homework

Derivation I

Let
$$W = W_n = W_p/2$$

 $R = R_p = R_n$
 $T_{pHL} = T_{pLH} = 0.69RC_L$
 $C_i = 3\frac{W_{i+1}}{W_{unit}}C_{unit}$
 $t_p = 0.69R(C_{int} + C_L)$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Derivation II

Consider the impact of scaling factor S.

$$t_{
ho} = 0.69 \left(rac{R}{S}SC_{int}\left(1+rac{C_L}{SC_{int}}
ight)
ight)$$

 $t_{
ho} = 0.69RC_{int}\left(1+rac{C_L}{SC_{int}}
ight)$
 $t_{
ho} = t_{
ho0}\left(1+rac{C_L}{SC_{int}}
ight)$

t_{p0}: Intrinsic delay.

- Scaling doesn't impact intrinsic delay.
- Scaling does impact total delay.
- $t_p \to t_{p0}$ as $S \to \infty$.
- Diminishing returns with increasing S.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Consider chain of inverters I

$$t_{p,chain} = t_{p1} + t_{p2} + \dots + t_{pn}$$
$$t_{pi} \approx t_{p0} \left(1 + \frac{C_{g,i+1}}{\gamma C_{g,i}}\right)$$
$$t_{p,chain} = \sum_{i=1}^{N} t_{pi}$$
$$t_{p,chain} = t_{p0} \sum_{i=1}^{N} \left(1 + \frac{C_{g,i+1}}{\gamma C_{g,i}}\right)$$

Given that

 $C_{g,N+1} = \overline{C_L}$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Consider chain of inverters II

 $\quad \text{and} \quad$

$$\gamma = rac{C_{int}}{C_g} pprox 1$$
 (technology-dependent constant).

Impact of input voltage function on energy consumption Interconnect modeling Homework

Sketch of derivation

- For each *i*, find $\sigma t_{p,chain}/\sigma C_{g,i}$.
- Solve for $\sigma t_{p,chain} / \sigma C_{g,i} = 0, \forall_{i=1} N$.
- Result is $\frac{C_{g,i+1}}{C_{g,i}} = \frac{C_{g,i}}{C_{g,i-1}}$.
- Each stage size geometric mean of previous and next: $C_{g,i} = \sqrt{C_{g,i-1}C_{g,i+1}}$.
- Constant factor relates sizing of all adjacent gate pairs.
- Each stage has same delay.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Sizing for optimal inverter chain delay

- Optimal stage-wise sizing factor: $\sqrt[N]{\frac{C_L}{C_{g,1}}}$.
- Minimum path delay: $t_{p,chain} = N t_{p0} \left(1 + \sqrt[N]{\frac{C_L}{C_{g,1}}} / \gamma \right)$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Example of inverter sizing

Given

- $C_L = 16C_1$.
- *N* = 4.

Per-stage scaling factor: $\sqrt[4]{16C_1/C_1} = 2$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Optimizing N I

Let

$$\Phi = \frac{C_L}{C_{g,1}}$$

$$t_{p,chain} = N t_{p0} \left(1 + \frac{\sqrt[N]{\Phi}}{\gamma} \right)$$

$$t_{p,chain} \frac{d}{dN} = \gamma + \sqrt[N]{\Phi} - \frac{\sqrt[N]{\Phi} \ln (\Phi)}{N}$$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Le

Optimizing N II

Set this to zero.

$$\begin{aligned} \mathsf{t} \ \phi &= \sqrt[N]{\Phi} \\ \mathbf{0} &= \gamma + \phi - \frac{\phi \ln \left(\phi^{N}\right)}{N} \\ \mathbf{0} &= \frac{\gamma}{\phi} + 1 - \frac{\ln \left(\phi^{N}\right)}{N} \\ \mathbf{0} &= \frac{\gamma}{\phi} + 1 - \frac{N \ln \left(\phi\right)}{N} \\ \mathbf{0} &= \frac{\gamma}{\phi} + 1 - \ln \left(\phi\right) \\ \ln \left(\phi\right) &= \frac{\gamma}{\phi} + 1 \end{aligned}$$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Optimizing N III

$$\phi = e^{\gamma/\phi + 1}$$

Hard to deal with this for $\gamma \neq$ 0. Consider implications for $\gamma =$ 0.

 $\phi = e$

Impact of input voltage function on energy consumption Interconnect modeling Homework

Optimal stage sizing factor

- Optimal tapering factor for $\gamma = 0$: $e \approx 2.7$.
- 3.6 for $\gamma = 1$.

Impact of input voltage function on energy consumption Interconnect modeling Homework

 $t_{p,chain}(\Phi)$

Φ	Unbuffered	<i>N</i> = 2	Optimal N
10	11	8.3	8.3
100	101	22	16.5
1,000	1,001	65	24.8
10,000	10,001	202	33.1

Impact of input voltage function on energy consumption Interconnect modeling Homework

Buffering example

Impact of input voltage function on energy consumption Interconnect modeling Homework

Upcoming topics

- Interconnect.
- Alternative logic design styles.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Review

- How can the optimal number of inverters in a load-driving chain be determined?
- How can the optimal size of each inverter in the chain be decided?
- How do determine optimal sizes of logic gates in arbitrary structures?
- Do example problem.

Derive and explain.

Impact of input voltage function on energy consumption Interconnect modeling Homework

Review

- How can the optimal number of inverters in a load-driving chain be determined?
- How can the optimal size of each inverter in the chain be decided?
- How do determine optimal sizes of logic gates in arbitrary structures?
 - May cover this near end of course.
- Do example problem.

Derive and explain.

Lecture plan

- 1. Inverter sizing
- 2. Impact of input voltage function on energy consumption
- 3. Interconnect modeling
- 4. Homework

Power consumption in synchronous CMOS

 $P = P_{SWITCH} + P_{SHORT} + P_{IFAK}$ $P_{SW/TCH} = C \cdot V_{DD}^2 \cdot f \cdot A$ $\dagger P_{SHORT} = \frac{b}{12} (V_{DD} - 2 \cdot V_T)^3 \cdot f \cdot A \cdot t$ $P_{LEAK} = V_{DD} \cdot (I_{SUB} + I_{GATE} + I_{JUNCTION} + I_{GIDL})$ <u>C : total swit</u>ched capacitance V_{DD} : high voltage *f* : switching frequency A : switching activity V_T : threshold voltage b: MOS transistor gain t : rise/fall time of inputs $† P_{SHORT}$ usually $\leq 10\%$ of P_{SWITCH} Smaller as $V_{DD} \rightarrow V_T$ A < 0.5 for combinational nodes, 1 for clocked nodes.

Inverter sizing Impact of input voltage function on energy consumption

Reasons for power consumption

- Dynamic
 - Charging and discharging RC loads.
 - $E_{dyn} = C_L V_{DD}^2.$ $P_{dyn} = C_L V_{DD}^2 f.$

 - But $f \propto V_{DD}$.
 - So $P_{dyn} = C_l V_{DD}^3$.
- Static
 - Sub-threshold leakage.
 - Gate leakage.
- Short-circuit: Pull-up and pull-down networks briefly both on.

Fixed voltage charging

$$E_{R}^{step}=\int_{t=0}^{\infty}V_{R}\left(t
ight) I_{R}\left(t
ight) dt$$

Fixed voltage charging

$$\begin{split} E_R^{step} &= \int_{t=0}^{\infty} V_R(t) I_R(t) dt \\ E_R^{step} &= \int_{t=0}^{\infty} V_R(t) \frac{V_R(t)}{R} dt \\ E_R^{step} &= \int_{t=0}^{\infty} V_{DD} e^{-t/RC} \frac{V_{DD} e^{-t/RC}}{R} dt \\ E_R^{step} &= \frac{V_{DD}^2}{R} \int_{t=0}^{\infty} e^{-2t/R} dt \\ E_R^{step} &= \frac{V_{DD}^2}{R} \left(-\frac{RC}{2}\right) \left(e^{-2t/RC}\right)_{t=0}^{\infty} \\ E_R^{step} &= \frac{-V_{DD}^2 C}{2} \left(0-1\right) \\ E_R^{step} &= \frac{V_{DD}^2 C}{2} \end{split}$$

Fixed current charging I

$$E_{R}^{ramp}=\int_{t=0}^{\infty}V_{R}\left(t
ight) I_{R}\left(t
ight) dt$$

Let T be the voltage ramp duration, I_R is fixed. V_R is fixed.

Fixed current charging II

$$\Delta V = \frac{\Delta q}{C}$$

$$V_{DD} = \frac{I_R T}{C}$$

$$I_R = \frac{CV_{DD}}{T}$$

$$V_R = RI_R$$

$$E_R^{ramp} = \int_{t=0}^{T} I_R(t) V_R(t) dt$$

$$E_R^{ramp} = \int_{t=0}^{T} \frac{CV_{DD}}{T} \frac{RCV_{DD}}{T} dt$$

$$E_R^{ramp} = \frac{RV_{DD}^2 C^2}{T^2} \int_{t=0}^{T} 1 dt$$

Fixed current charging III

$$E_{R}^{ramp} = \frac{V_{DD}^{2}C^{2}R}{T^{2}}T$$
$$E_{R}^{ramp} = \frac{V_{DD}^{2}C^{2}R}{T}$$
$$E_{R}^{ramp} = \frac{V_{DD}^{2}C}{2}\frac{2RC}{T}$$

Break-even point

$$E_{R}^{step} = E_{R}^{ramp}$$

$$\frac{V_{DD}^{2}C}{2} = \frac{V_{DD}^{2}C}{2} \frac{2RC}{T}$$

$$1 = \frac{2RC}{T}$$

$$T = 2RC$$

- Properly controlling $V_{R}(t)$.
- Performance.
- In limit, permits reversible computation with low/no power consumption during charging and discharging.

Charging methods summary

- I(t) influences energy consumption for same change in V.
- In theory, keeping voltage differences very small can permit extremely low-power operation.
- Leakage, current control, and preserving reversiblity make this challenging.

Lecture plan

- 1. Inverter sizing
- 2. Impact of input voltage function on energy consumption
- 3. Interconnect modeling
- 4. Homework

Capacitive load modeling

Robert Dick Digital Integrated Circuits

Interconnect modeling

Interconnect capacitance

$$C = \frac{\epsilon_{ox}}{t_{ox}} WL$$

Robert Dick Digital Integrated Circuits

Permittivity (k)

Material	ϵ
Vacuum	1
Aerogels	${\sim}1.5$
Polyimides	3–4
SiO ₂	3.9
Glass-epoxy	5
Si_3N_4	7.5
Alumina	9.5
Silicon	11.7

Fringing

$$c_{wire} = c_{pp} + c_{fringe} = W rac{\epsilon_{ox}}{t_{ox}} + rac{2\pi\epsilon_{ox}}{\log\left(t_{ox}/H
ight)}$$

Trends in interconnect design

- More metal layers.
- Lower aspect ratios.
 - More coupling.
- Smaller transistors, but similar-length global interconnect.

Upcoming topics

- Alternative logic design styles.
- Latches and flip-flops.
- Memories.

Lecture plan

- 1. Inverter sizing
- 2. Impact of input voltage function on energy consumption
- 3. Interconnect modeling
- 4. Homework

Homework assignment

- 10 October: Homework 2.
- 10 October: Read sections 5.4, 5.5, 5.6, and 3.5 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003.

• 17 October: Read sections 6.2.1, 4.1, and 4.3.2 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective.* <u>Prentice-Hall. second edition</u>, 2003.

• 22 October: Lab 3.