Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Office: Email: Phone: Cellphone:

Robert Dick 2417-E EECS dickrp@umich.edu 734–763–3329 847–530–1824 GSI: Shengshou Lu Office: 2725 BBB Email: luss@umich.edu

Review

- 1 Explain each transistor operating region.
- 2 What is pinch-off?
- B How does body bias work?
- 4 What is velocity saturation?
- 5 What is sub-threshold operation?

Device trends

Fabrication Layout and design rules Packaging and board-level integration Homework

Lecture plan

- 1. Device trends
- 2. Fabrication
- 3. Layout and design rules
- 4. Packaging and board-level integration
- 5. Homework

Process variation

Given our current knowledge of transistor operation, what impact will variation in

- dopant concentrations,
- oxide thickness,
- transistor width, and
- interconnect width

have?

Device trends

Fabrication Layout and design rules Packaging and board-level integration Homework

FinFETs

Robert Dick Digital Integrated Circuits

Device trends

Fabrication Layout and design rules Packaging and board-level integration Homework

Carbon nanotubes and nanowires

FION AIST.

Robert Dick Digital Integrated Circuits

Quantum cellular automata

- Binary information encoded in device configuration.
- Signals are propagated through nearest neighbor interaction.

From Professor Xiaobo Sharon Hu.

Device trends

Fabrication Layout and design rules Packaging and board-level integration Homework

Quantum cellular automata arithmetic-logic unit

From Professor Xiaobo Sharon Hu.

Robert Dick Digital Integrated Circuits

Device trends

Fabrication Layout and design rules Packaging and board-level integration Homework

Single-electron tunneling transistors

Common problems

- Difficult to get high-quality devices where they are needed.
- High susceptibility to thermal noise.
- High susceptibility to charge trap offsets.
- Low gain.

Device trends

Fabrication Layout and design rules Packaging and board-level integration Homework

What does the future hold

- CMOS for another decade or so, until devices consist of a small integer number of atoms.
- Nobody knows what comes next.
- Nothing? New device technology?
- Implications for information technology?

Lecture plan

- 1. Device trends
- 2. Fabrication
- 3. Layout and design rules
- 4. Packaging and board-level integration
- 5. Homework

Review

- List a few different alternatives to CMOS for use in digital systems.
- 2 Indicate their advantages and disadvantages relative to CMOS.

NMOSFET

Insulator properties

- Low- κ : reduced capacitance, useful for isolating wires.
- High-κ: increased capacitance, useful for maintaining k despite increased gate thickness.

High-level fabrication process overview

Dual-Well Trench-Isolated CMOS Process

Schematic of circuit to fabricate

Layout of circuit to fabricate

Robert Dick Digital Integrated Circuits

Overview of fabrication process

Fabrication process details

FIGURE 1.37. General semiconductor production process.

From Richard C. Jaeger. Introduction to Microelectronic Fabrication. Addison-Wesley, 1993.

SiO_2 patterning

Etching

Fig. 2.5 Etching profiles obtained with (a) isotropic wet chemical etching and (b) dry anisotropic etching in a plasma or reactive-ion etching system.

From Richard C. Jaeger. Introduction to Microelectronic Fabrication. Addison-Wesley, 1993.

Summary of processing steps

- Define active areas.
- 2 Etch and fill trenches.
- Implant well regions.
- 4 Deposit and pattern polysilicon/metal gate layer.
- 5 Implant source and drain regions, and substrate contacts.
- 6 Create contacts and via windows.
- 7 Deposit and pattern metal layers.

Step 1: epitaxial layer

Step 2: gate oxide and sacrificial nitride layer deposition

Step 3: plasma etching

Step 4: trench filling, CMP, etching, SiO₂ deposition

Step 5: n-well and V_{Tn} adjustment implants

Step 6: p-well and V_{Tp} adjustment implants

Step 7: polysilicon/metal deposition and etch

Step 8: n^+ and p^+ source, drain, and poly implantation

Step 9: SiO_2 deposition and contact etch

Robert Dick Digital Integrated Circuits

Step 10: deposit and pattern first interconnect layer

Step 11: deposit SiO₂, etch contacts, deposit and pattern second interconnect layer

Robert Dick Digital Integrated Circuits

Interconnect layers

Robert Dick Digital Integrated Circuits

Al vs. Cu

- For AI, can deposit and etch metal layers.
- Cu alloys with Si.
- Cannot safely deposit Cu directly on Si.
- Cu difficult to controllably etch.
- Instead, build SiO₂ shield and etch contact regions.
Damascene process

From IBM.

Interconnect layers

interconnections, and has effective transistor channel-lengths of only 0.12 µm. It is the first commercial fabrication process to use copper wires (see "The Damascus connection," p. 25].

Robert Dick Digital Integrated Circuits

Lecture plan

- 1. Device trends
- 2. Fabrication
- 3. Layout and design rules
- 4. Packaging and board-level integration
- 5. Homework

Layout production

- Must define 2-D structure for each mask/layer.
- Initial topology planning often done.
- Can be partially or fully automated.
- Must adhere to design rules.

Stick diagrams

Robert Dick Digital Integrated Circuits

Faults and variation

- Clearly cannot have two wires crossing each other.
- Variation imposes further constraints.

Layout and design rules Packaging and board-level integration

Possible faults

Robert Dick **Digital Integrated Circuits** fault

Design rules

Summary

- Automatically-checked layout rules.
- Reduce fault probabilities.
- · Generally regarded as necessary.

Caveats

- Recent studies show many rules are not beneficial.
- Interaction range is increasing relative to λ .
 - · Complicates design rules, making manual comprehension difficult.
- Design rule checking can be slow.

Meanings of colors in layouts

Layer	Color	Representation
Well (p,n)	Yellow	
Active Area (n+,p+)	Green	
Select (p+,n+)	Green	<u></u>
Polysilicon	Red	
Metal1	Blue	
Metal2	Magenta	
Contact To Poly	Black	
Contact To Diffusion	Black	
Via	Black	

Layout layers

Intra-layer design rules

Via design rules

Robert Dick Digital Integrated Circuits

Layout editor

Robert Dick Digital Integrated Circuits

Design rule checker

Lecture plan

- 1. Device trends
- 2. Fabrication
- 3. Layout and design rules
- 4. Packaging and board-level integration
- 5. Homework

Packaging requirements

- Electrical: Good insulators and conductors.
- Mechanical: Reliable, doesn't stress IC.
- Thermal: Low thermal resistance to ambient. In some cases, consistency more important.
- Cost.

Wire bonding

Tape automated bonding

Tape automated bonding die attachment

Flip-chip bonding

Through-hole PCB mounting

Robert Dick Digital Integrated Circuits

Surface mount

Example package types

Robert Dick Digital Integrated Circuits

Chip cap

Packaging and board-level integration Homework

Heat pipe

Heat pipe details

Heat pipe thermal cycle

- 1) Working fluid evaporates to vapour absorbing thermal energy.
- 2) Vapour migrates along cavity to lower temperature end.
- Vapour condenses back to fluid and is absorbed by the wick, releasing thermal energy
- 4) Working fluid flows back to higher temperature end.

Example of variation in package parameters

Туре	C (pF)	L (nH)
68-pin plastic DIP	4	35
68-pin ceramic DIP	7	20
256-pin PGA	5	15
Wire bond	1	1
Solder bump	0.5	0.1

- Instead of integrating more ICs, put more on an IC.
- Advantages: Lower cost per device, compact.
- Disadvantages: Requires integration of devices fabricated with different processes.

Move from lead solder

- Tin-lead solder was commonly used.
- Lead is toxic, accumulates in the body, and is difficult to dispose of.
- Pure tin works in the short term.
- May be acceptable as solder in the long term.
- Problems with plating.

Tin whiskers

connector pins after 10 years (courtesy of NASA GSFC)

Screw dislocations, primarily caused by plating.

Robert Dick Digital

Digital Integrated Circuits
Multi-chip modules

- Better C than board-level integration.
- Integrate multiple processes.
- Somewhat compact.
- Expensive.

Multiple active layer 3-D integration

Potential for thermal problems.

Heterogeneous system 3-D integration

Integrate

- Logic.
- Memory.
- Analog.
- Research on discrete components (with soldering).

Microchannel cooling

Credit to David Atienza at EPFL.

Robert Dick

Vapor-phase cooling

Credit to Michael J. Ellsworth, Jr. and Robert E. Simons at IBM.

- CMOS is the most economical way to build digital logic now, but potential alternatives being developed.
- Fabrication process is essentially repeated deposition, masking, etching, and polishing steps to dope and build material layers.
- $AI \rightarrow Cu$.
- $SiO_2 \rightarrow High-\kappa$ and Low- κ .
- Cu interconnects use damascene process.
- Poly-Si→metal.

Upcoming topics

- MOSFET dynamic behavior.
- Wires.
- CMOS inverters.

Lecture plan

- 1. Device trends
- 2. Fabrication
- 3. Layout and design rules
- 4. Packaging and board-level integration
- 5. Homework

Homework assignment

- 24 September: Read Mark T. Bohr, Robert S. Chau, Tahir Ghani, and Kaizad Mistry. The High-k Solution. *IEEE Spectrum*, October 2007.
- 24 September: Homework 1.
- 3 October: Lab 2.