Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Office: Email: Phone: Cellphone:

Robert Dick 2417-E EECS dickrp@umich.edu 734–763–3329 847–530–1824 GSI: Shengshou Lu Office: 2725 BBB Email: luss@umich.edu

Review

- What are the historical motivations that have driven changes in digital device implementation technologies?
- What is the difference between a combinational and sequential network?
- What substrates (device types) have been used for computation?
- What are the primary advantages of integrated circuits over these competing technologies?

Lecture plan

- 1. Recent history of digital integrated circuits
- 2. Digital device requirements
- 3. Introduction to Cadence tools
- 4. Homework

Homework

Remember the ENIAC?

- 1946.
- 18,000 vacuum tubes.
- 30 tons.
- 100 kHz.
- Unreliable.

What impact would ICs have on it?

Digital device requirements Introduction to Cadence tools Homework

IC ENIAC

- 30 tons \rightarrow 40 mm².
- 100 kHz \rightarrow 20 MHz.
- Unreliable.

Digital device requirements Introduction to Cadence tools Homework

First microprocessor

- Intel 4004.
- 1971.
- 2,300 transistors.
- $12 \, \text{mm}^2$.
- 740 kHz.
- 12-bit addresses, 8-bit instructions, 4-bit data words.

Trend for one company

- More than ten generations.
- Datapath: 4 bits \rightarrow 64 bits.
- Frequency: 740 KHz \rightarrow 3 GHz.
- In-order, cache-less → Architectural features for common-case performance.
- Uni-processor \rightarrow Chip-multiprocessor (CMP).
- A few thousand transistors \rightarrow Billions of transistors.

Recent history of digital integrated circuits Digital device requirements

Digital device requirements Introduction to Cadence tools Homework

Moore's law

- 1965.
- The number of transistors in an IC doubles every 18-24 months.

Digital device requirements Introduction to Cadence tools Homework

Actual trend

Digital device requirements Introduction to Cadence tools Homework

Feature size trends

Dick Digital Integrated Circuits

Digital device requirements Introduction to Cadence tools Homework

Logic density trends

Robert Dick Digital Integrated Circuits

Frequency trends

- Technology scaling \downarrow delay by 30% and \uparrow frequency by 43%.
- Frequency $\propto 1/{\sf Delay}.$

Power trends

Robert Dick Digital Integrated Circuits

Digital device requirements Introduction to Cadence tools Homework

Power density trends

Digital device requirements Introduction to Cadence tools Homework

Power supply trends

Digital device requirements Introduction to Cadence tools Homework

Productivity trends

Impact of power consumption and temperature

- Early ICs used bipolar transistors (BJT).
- Easier to manufacture reliably, faster.
- In the 1970s, integration densities rose.
- Each bipolar device consumes a lot of power.
- Eventually power became the limiting factor in moving from BJT to MOS devices.
- Currently CMOS dominates.
- Complementary MOS logic.
- Likely to dominate for the next decade.

Power consumption trends

- Initial optimization at transistor level.
- Further research-driven gains at this level difficult.
- Research moved to higher levels, e.g., RTL.
- Trade area for performance and performance for power.
- Clock frequency gains linear.
- Voltage scaling V_{DD}^2 important.

Power consumption in synchronous CMOS

 $P = P_{SWITCH} + P_{SHORT} + P_{IFAK}$ $P_{SW/TCH} = C \cdot V_{DD}^2 \cdot f \cdot A$ $\dagger P_{SHORT} = \frac{b}{12} (V_{DD} - 2 \cdot V_T)^3 \cdot f \cdot A \cdot t$ $P_{LEAK} = V_{DD} \cdot (I_{SUB} + I_{GATE} + I_{JUNCTION} + I_{GIDL})$ <u>*C*</u> : total switched capacitance V_{DD} : high voltage f : switching frequency A : switching activity V_T : threshold voltage b: MOS transistor gain t : rise/fall time of inputs $† P_{SHORT}$ usually $\leq 10\%$ of P_{SWITCH} Smaller as $V_{DD} \rightarrow V_T$ A < 0.5 for combinational nodes, 1 for clocked nodes.

Wiring power consumption

- In the past, transistor power \gg wiring power.
- Process scaling \Rightarrow ratio changing.

Other (related) design trends

- Smaller transistors.
- Bigger chips (die).
- Lower power consumption.
- Higher clock frequencies.
- More complex designs.
- Lower voltage.

Other (related) design trends

- Smaller transistors.
- Bigger chips (die).
- Lower power consumption.
- Higher clock frequencies.
- More complex designs.
- Lower voltage.
- More cores.

Some of these trends are slowing.

Current status

- Feature size: 22 nm.
- Integration: 700,000,000 transistors.
- Frequency: 2-4 GHz.
- Power: 100 W.

Current status

- Feature size: 22 nm.
- Integration: 700,000,000 transistors.
- Frequency: 2-4 GHz.
- Power: 100 W.

Only two of these characteristics have changes in the past few years.

Recent history of digital integrated circuits Digital device requirements

oduction to Cadence tool Homeworl

Multi-core processors

Intel Core 2 Duo

Robert Dick Digital Integrated Circuits

Summary of recent IC history

- Process scaling improves device count, speed.
- Power density increases, eventually limiting further improvements.
- Current move to multi-core.
- Also considering new device technologies, but no clear winners now.

Lecture plan

- 1. Recent history of digital integrated circuits
- 2. Digital device requirements
- 3. Introduction to Cadence tools
- 4. Homework

Levels of abstraction

- Hardware-software system.
- Processor.
- Functional unit.
- Logic stage: flip-flop or combinational logic network.
- Gate.
- Transistor or wire.
- Physical material or doping regions.

Derive and explain.

What properties must a "digital" device have?

- What allows us to treat a device as digital, and still have the system work?
- Does this imply certain properties for the transfer function?

Completeness

- Technology should support implementation of arbitrary Boolean functions.
- Consider {AND2, OR2} and {NAND2}.

Derive and explain.

- Metal Oxide Semiconductor
- Positive and negative carriers
- Complimentary MOS
- PMOS gates are like normally closed switches that are good at transmitting only true (high) signals
- NMOS gates are like normally open switches that are good at transmitting only false (low) signals

- Metal Oxide Semiconductor
- Positive and negative carriers
- Complimentary MOS
- PMOS gates are like normally closed switches that are good at transmitting only true (high) signals
- NMOS gates are like normally open switches that are good at transmitting only false (low) signals

- Metal Oxide Semiconductor
- Positive and negative carriers
- Complimentary MOS
- PMOS gates are like normally closed switches that are good at transmitting only true (high) signals
- NMOS gates are like normally open switches that are good at transmitting only false (low) signals

NMOSFET

Robert Dick Digital Integrated Circuits

NMOSFET

- NMOS turns on when the gate is high
- PMOS just like NMOS, with N and P regions swapped
- PMOS turns on when the gate is low
- NMOS good at conducting low (0s)
- PMOS good at conducting high (1s)
- Use NMOS and PMOS transistors together to build circuits
 - Complementary metal oxide semiconductor (CMOS)

Digital device requirements

What is this?

Robert Dick Digital Integrated Circuits

What is this? How would we lay it out?

Non-Credit quiz on material covered so far

1 History of integrated circuits.

- 1 What happens as a result of process scaling?
- 2 What have the motivations for major changes in device technology been?
- What is a digital system?
- 4 What is a general-purpose computer?
- What is an embedded system?
- 6 What is an integrated circuit?
- What is an ASIC?
- 8 What is an instruction processor?
- What is an FPGA?
- 2 What gate properties support use in digital systems?
 - 1 What properties should $V_{out}-V_{in}$ curve have?
 - 2 Describe completeness.

Upcoming topics

Enough overview: time to start building!

- Diodes
- Transistor static behavior
- Transistor dynamic behavior

Lecture plan

- 1. Recent history of digital integrated circuits
- 2. Digital device requirements
- 3. Introduction to Cadence tools
- 4. Homework

Lab one challenges

- Learning to use the tools (Friday).
- Understanding the circuits used in the lab (Tuesday).
- A note on the CAD tools market.

Derive and explain.

NMOS inverter schematic

Robert Dick Digital Integrated Circuits

NMOS inverter simulation results

Robert Dick

Digital Integrated Circuits

Upcoming topics

- 6 September: Discussion in room 1620 BBB will focus on Lab 1.
- 10 September: MOSFETs.

Lecture plan

- 1. Recent history of digital integrated circuits
- 2. Digital device requirements
- 3. Introduction to Cadence tools
- 4. Homework

Homework assignment and announcement

- 5 September: Email topics of interest.
- 10 September: Read Sections 3.1, 3.2, and 3.3.1 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003.

• 17 September: Laboratory assignment one.