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Recent history of digital integrated circuits
Digital device requirements

Introduction to Cadence tools
Homework

Review

What are the historical motivations that have driven changes in
digital device implementation technologies?

What is the difference between a combinational and sequential
network?

What substrates (device types) have been used for computation?

What are the primary advantages of integrated circuits over these
competing technologies?
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Lecture plan

1. Recent history of digital integrated circuits

2. Digital device requirements

3. Introduction to Cadence tools

4. Homework
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Remember the ENIAC?

1946.

18,000 vacuum tubes.

30 tons.

100 kHz.

Unreliable.

What impact would ICs have on it?
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IC ENIAC

30 tons → 40 mm2.

100 kHz → 20 MHz.

Unreliable.
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First microprocessor

Intel 4004.

1971.

2,300 transistors.

12 mm2.

740 kHz.

12-bit addresses, 8-bit
instructions, 4-bit data words.

6 Robert Dick Digital Integrated Circuits



Recent history of digital integrated circuits
Digital device requirements

Introduction to Cadence tools
Homework

Trend for one company

More than ten generations.

Datapath: 4 bits → 64 bits.

Frequency: 740 KHz →
3 GHz.

In-order, cache-less →
Architectural features for
common-case performance.

Uni-processor →
Chip-multiprocessor (CMP).

A few thousand transistors →
Billions of transistors.
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Moore’s law

1965.

The number of transistors in an IC doubles every 18–24 months.

8 Robert Dick Digital Integrated Circuits



Recent history of digital integrated circuits
Digital device requirements

Introduction to Cadence tools
Homework

Actual trend
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Feature size trends
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Logic density trends
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Frequency trends

Technology scaling ↓ delay by 30% and ↑ frequency by 43%.

Frequency ∝ 1/Delay.
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Power trends
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Power density trends
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Power supply trends
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Productivity trends
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Impact of power consumption and temperature

Early ICs used bipolar transistors (BJT).

Easier to manufacture reliably, faster.

In the 1970s, integration densities rose.

Each bipolar device consumes a lot of power.

Eventually power became the limiting factor in moving from BJT
to MOS devices.

Currently CMOS dominates.

Complementary MOS logic.

Likely to dominate for the next decade.
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Power consumption trends

Initial optimization at transistor level.

Further research-driven gains at this level difficult.

Research moved to higher levels, e.g., RTL.

Trade area for performance and performance for power.

Clock frequency gains linear.

Voltage scaling VDD
2 – important.
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Power consumption in synchronous CMOS

P = PSWITCH + PSHORT + PLEAK

PSWITCH = C · VDD
2 · f · A

† PSHORT =
b

12
(VDD − 2 · VT )3 · f · A · t

PLEAK = VDD · (ISUB + IGATE + IJUNCTION + IGIDL)

C : total switched capacitance VDD : high voltage

f : switching frequency A : switching activity

b : MOS transistor gain VT : threshold voltage

t : rise/fall time of inputs

† PSHORT usually ≤ 10% of PSWITCH

Smaller as VDD → VT

A < 0.5 for combinational nodes, 1 for clocked nodes.
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Wiring power consumption

In the past, transistor power � wiring power.

Process scaling ⇒ ratio changing.
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Other (related) design trends

Smaller transistors.

Bigger chips (die).

Lower power consumption.

Higher clock frequencies.

More complex designs.

Lower voltage.
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Other (related) design trends

Smaller transistors.

Bigger chips (die).

Lower power consumption.

Higher clock frequencies.

More complex designs.

Lower voltage.

More cores.

Some of these trends are slowing.
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Current status

Feature size: 22 nm.

Integration: 700,000,000 transistors.

Frequency: 2-4 GHz.

Power: 100 W.

Only two of these characteristics have changes in the past few years.
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Multi-core processors

Intel Core 2 Duo
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Summary of recent IC history

Process scaling improves device count, speed.

Power density increases, eventually limiting further improvements.

Current move to multi-core.

Also considering new device technologies, but no clear winners
now.
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Lecture plan

1. Recent history of digital integrated circuits

2. Digital device requirements

3. Introduction to Cadence tools

4. Homework
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Levels of abstraction

Hardware–software system.

Processor.

Functional unit.

Logic stage: flip-flop or combinational logic network.

Gate.

Transistor or wire.

Physical material or doping regions.

Derive and explain.
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What properties must a “digital” device have?

What allows us to treat a device as digital, and still have the
system work?

Does this imply certain properties for the transfer function?
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Transfer function

Vout

Vin
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Completeness

Technology should support implementation of arbitrary Boolean
functions.

Consider {AND2, OR2} and {NAND2}.

Derive and explain.
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CMOS

Metal Oxide Semiconductor

Positive and negative carriers

Complimentary MOS

PMOS gates are like normally closed switches that are good at
transmitting only true (high) signals

NMOS gates are like normally open switches that are good at
transmitting only false (low) signals
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NMOSFET

gate

silicon bulk (P)

drain (N)source (N)

dielectric

gate

silicon bulk (P)

drain (N)source (N) channel

dielectric
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CMOS

NMOS turns on when the gate is high

PMOS just like NMOS, with N and P regions swapped

PMOS turns on when the gate is low

NMOS good at conducting low (0s)

PMOS good at conducting high (1s)

Use NMOS and PMOS transistors together to build circuits

Complementary metal oxide semiconductor (CMOS)
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What is this?
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What is this? How would we lay it out?

V
DD

VSS

A B
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Non-Credit quiz on material covered so far

1 History of integrated circuits.
1 What happens as a result of process scaling?
2 What have the motivations for major changes in device technology

been?
3 What is a digital system?
4 What is a general-purpose computer?
5 What is an embedded system?
6 What is an integrated circuit?
7 What is an ASIC?
8 What is an instruction processor?
9 What is an FPGA?

2 What gate properties support use in digital systems?
1 What properties should Vout–Vin curve have?
2 Describe completeness.
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Upcoming topics

Enough overview: time to start building!

Diodes

Transistor static behavior

Transistor dynamic behavior
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Lecture plan

1. Recent history of digital integrated circuits

2. Digital device requirements

3. Introduction to Cadence tools

4. Homework
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Lab one challenges

Learning to use the tools (Friday).

Understanding the circuits used in the lab (Tuesday).

A note on the CAD tools market.

Derive and explain.

40 Robert Dick Digital Integrated Circuits



Recent history of digital integrated circuits
Digital device requirements

Introduction to Cadence tools
Homework

NMOS inverter schematic
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NMOS inverter simulation results
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Upcoming topics

6 September: Discussion in room 1620 BBB will focus on Lab 1.

10 September: MOSFETs.
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Homework assignment and announcement

5 September: Email topics of interest.

10 September: Read Sections 3.1, 3.2, and 3.3.1 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective.
Prentice-Hall, second edition, 2003.

17 September: Laboratory assignment one.
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