Digital Integrated Circuits – EECS 312

http://ziyang.eecs.umich.edu/~dickrp/eecs312/

G Ei

Teacher:	Robert Dick
Office:	2417-G EECS
Email:	dickrp@eecs.umich.edu
Phone:	734–763–3329
Cellphone:	847–530–1824

SI:	Myung-Chul Kim
mail:	mckima@umich.edu

Review

- Design a non-trivial logic gate.
- What happens to inverter delay as the driving MOSFET widths are increased?
- What happens to inverter delay as the driven MOSFET widths are increased?
- What impact does non-instantaneous rise/fall time have on the propagation delay for the subsequent logic stage?

Lab 3

- Input inverters.
- Implications of sizing on energy consumption.

Derive and explain.

Short talks

Speakers and topics

- ¹ Katherine, Olga, and Matt: Atomic layer deposition.
- Michael and Heesung: Impact of materials on devices and circuits.
- ³ Haishan and Guanyu: Optical interconnect.
- 4 Ike and Dan: ALU design alternatives.
- 5 Tyler and Megan: Subthreshold circuit applications.
- ⁶ Sui Yu, Zhenghong, and Wang Yi: FinFETs.
 - First talk: 4 November, Thursday.
 - Order?

Lecture plan

- 1. Inverter sizing
- 2. Homework

Dependence of delay on width (R)

- Fix $R_L C_L$ and vary W.
- Eventually, self-loading dominates.

Inverter chain delay optimization

Given

- Size (width) of first inverter in chain,
- Driven load,
- Transistors are minimal length, and
- $W_{P}/W_{n} = 2$ approximately balances t_{pHL} and t_{pLH} .

Find

- Optimal number of inverters in chain and
- Optimal size (width) of each inverter

to minimize chain delay.

Intuition

- Given two inverters (first fixed) and a large load (C_L) , how should the second be sized to minimize delay?
- $C_{G2} = C_{G1}$ (minimal)?
- $C_{G2} > C_L?$
- $C_{G2} = C_L?$
- Some other setting?
- Why?

Derivation I

Let
$$W = W_n = W_p/2$$

 $R = R_p = R_n$
 $T_{pHL} = T_{pLH} = 0.69RC_L$
 $C_i = 3\frac{W_{i+1}}{W_{unit}}C_{unit}$
 $t_p = kR(C_{int} + C_L) = kRC_{int} + kRC_L$

Derivation II

Consider the impact of scaling factor S.

$$t_{p} = 0.69 \left(\frac{R}{S} SC_{int} \left(1 + \frac{C_{L}}{SC_{int}} \right) \right)$$
$$t_{p} = 0.69 RC_{int} \left(1 + \frac{C_{L}}{SC_{int}} \right)$$
$$t_{p} = t_{p0} \left(1 + \frac{C_{L}}{SC_{int}} \right)$$

*t*_{p0}: Intrinsic delay.

- Scaling doesn't impact intrinsic delay.
- Scaling does impact total delay.
- $t_p \rightarrow t_{p0}$ as $S \rightarrow \infty$.
- Diminishing returns with increasing S.

Consider chain of inverters I

$$t_{p,chain} = t_{p1} + t_{p2} + \dots + t_{pn}$$
$$t_{pi} \approx RC \left(1 + \frac{C_{g,i+1}}{\gamma C_{g,i}}\right)$$
$$t_{p,chain} = \sum_{i=1}^{N} t_{pi}$$
$$t_{p,chain} = t_{p0} \sum_{i=1}^{N} \left(1 + \frac{C_{g,i+1}}{\gamma C_{g,i}}\right)$$

Given that

$$C_{g,N+1} = C_L$$

Consider chain of inverters II

 $\quad \text{and} \quad$

$$\gamma = rac{C_{int}}{C_g} pprox 1$$
 (technology-dependent constant).

Sketch of derivation

- For each *i*, find $\sigma t_{p,chain} / \sigma C_{g,i}$.
- Solve for $\sigma t_{p,chain} / \sigma C_{g,i} = 0, \forall_{i=1} N$.
- Result is $\frac{C_{g,i+1}}{C_{g,i}} = \frac{C_{g,i}}{C_{g,i-1}}$.
- Each stage size geometric mean of previous and next: $C_{g,i} = \sqrt{C_{g,i-1}C_{g,i+1}}.$
- Constant factor relates sizing of all adjacent gate pairs.
- Each stage has same delay.

Sizing for optimal inverter chain delay

- Optimal stage-wise sizing factor: $\sqrt[N]{\frac{C_L}{C_{g,1}}}$.
- Minimum path delay: $t_{p,chain} = N t_{p0} \left(1 + \sqrt[N]{\frac{C_L}{C_{g,1}}} / \gamma \right)^2$

Example of inverter sizing

Given

- $C_L = 16C_1$.
- *N* = 4.

Per-stage scaling factor: $\sqrt[4]{16C_1/C_1} = 2$

Optimizing N I

Let

Optimizing N II

Set this to zero.

et
$$\phi = \sqrt[N]{\Phi}$$

 $0 = \gamma + \phi - \frac{\phi \ln (\phi^N)}{N}$
 $0 = \frac{\gamma}{\phi} + 1 - \frac{\ln (\phi^N)}{N}$
 $0 = \frac{\gamma}{\phi} + 1 - \frac{N \ln (\phi)}{N}$
 $0 = \frac{\gamma}{\phi} + 1 - \ln (\phi)$
 $\ln (\phi) = \frac{\gamma}{\phi} + 1$
 $\phi = e^{\gamma/\phi + 1}$

Optimizing N III

Hard to deal with this for $\gamma \neq 0$. Consider implications for $\gamma = 0$. $\phi = e$

Optimal stage sizing factor

- Optimal tapering factor for $\gamma = 0$: $e \approx 2.7$.
- 3.6 for $\gamma = 1$.

 $t_{p,chain}(\Phi)$

φ	Unbuffered	<i>N</i> = 2	Optimal N
10	11	8.3	8.3
100	101	22	16.5
1,000	1,001	65	24.8
10,000	10,001	202	33.1

Buffering example

Robert Dick Digital Integrated Circuits

Upcoming topics

- Interconnect.
- Alternative logic design styles.

Lecture plan

- 1. Inverter sizing
- 2. Homework

Homework assignment

- 2 November, Tuesday: Rest of Lab 3.
- 2 November, Tuesday: Read Sections 4.4.1–4.4.4 and 5.4.3 in J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003. Don't put off the reading or you might be overloaded when more homework problems are assigned.
- 4 November, Thursday: First short talk.