
Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Office: Email: Phone: Cellphone:

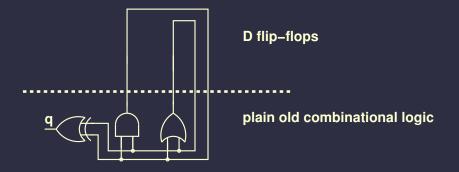
Robert Dick 2417-E EECS dickrp@umich.edu 734–763–3329 847–530–1824 GSI: Shengshou Lu Office: 2725 BBB Email: luss@umich.edu

Review

- What is charge sharing?
- Why are there two different expressions for the voltage to which V_{out} settles?
- Is leakage a significant factor in charge sharing?
- How can it be prevented?
- What is volatile memory?
- What is non-volatile memory?
- What is static memory?
- What is dynamic memory?

Derive and explain.

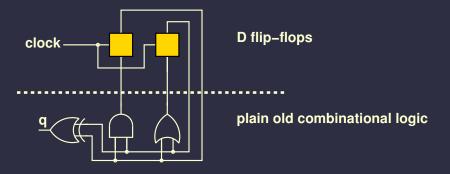
Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements


Lecture plan

- 1. Latches and flip-flops
- 2. Memory array structures
- 3. Memory array structures
- 4. Dynamic random access memory
- 5. Homework

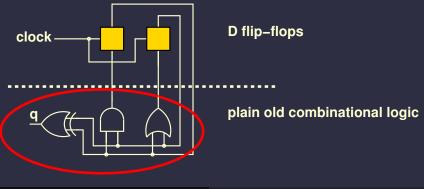
Reset/set latches Clocking conventions D flip-flop Other memory elements

Combinational vs. sequential logic


- No feedback between inputs and outputs combinational
 - Outputs a function of the current inputs, only

Reset/set latches Clocking conventions D flip-flop Other memory elements

Combinational vs. sequential logic


- No feedback between inputs and outputs combinational
 - · Outputs a function of the current inputs, only
- Feedback sequential

Reset/set latches Clocking conventions D flip-flop Other memory elements

Combinational vs. sequential logic

- No feedback between inputs and outputs combinational
 - Outputs a function of the current inputs, only

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

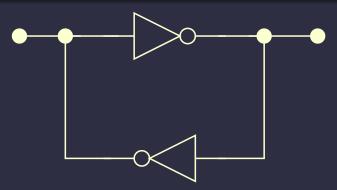
Sequential logic

- Outputs depend on current state and (maybe) current inputs
- Next state depends on current state and input
- For implementable machines, there are a finite number of states
- Synchronous
 - State changes upon clock event (transition) occurs
- Asynchronous
 - State changes upon inputs change, subject to circuit delays

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Flip-flop introduction

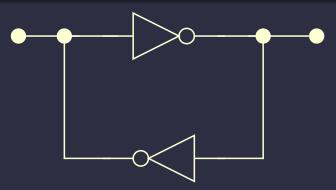
- Stores, and outputs, a value.
- Puts a special clock signal in charge of timing.
- Allows output to change in response to clock transition.
- More on this later.
 - Timing and sequential circuits


Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Introduction to sequential elements

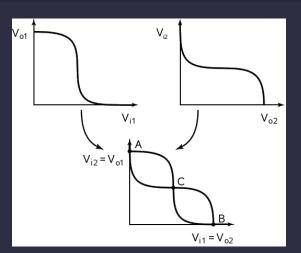
- Feedback and memory.
- Memory.
- Latches.

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

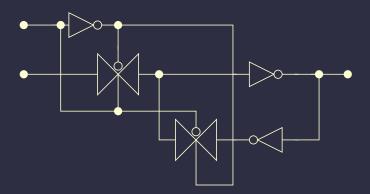

Feedback and memory

- Feedback or physical state are the root of memory.
- Can compose a simple loop from inverters.

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

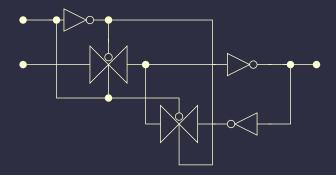

Feedback and memory

- Feedback or physical state are the root of memory.
- Can compose a simple loop from inverters.
- However, there is no way to switch the value.


Memory array structures Memory array structures Dynamic random access memory Homework

Bistability

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements


TG and NOT-based memory

- Can break feedback path to load new value
- However, potential for timing problems

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

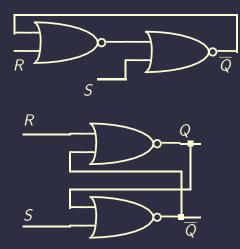
TG and NOT-based memory

- Can break feedback path to load new value.
- How can this be made more area-efficient?
- Resize transistors, remove transistors, use state?

Memory array structures Memory array structures Dynamic random access memory Homework

Section outline

Reset/set latches Clocking conventions D flip-flop

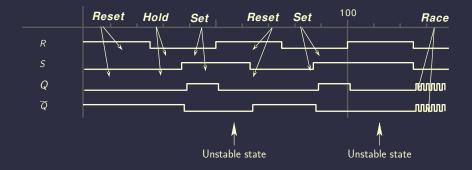

Latches and flip-flops Reset/set latches Clocking conventions D flip-flop Other memory elements

Memory array structures Memory array structures Dynamic random access memory Homework

Reset/set latch

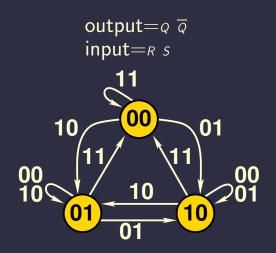
Reset/set latches

Clocking conventions D flip-flop Other memory elements



Memory array structures Memory array structures Dynamic random access memory Homework

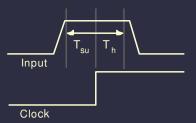
Reset/set latches


Clocking conventions D flip-flop Other memory elements

Reset/set timing

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

RS latch state diagram

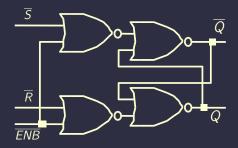


Memory array structures Memory array structures Dynamic random access memory Homework

Reset/set latches

Clocking conventions D flip-flop Other memory elements

Clocking terms

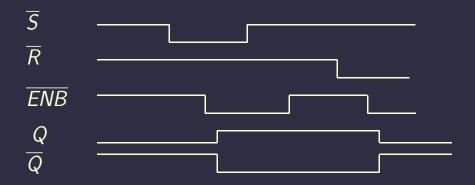

- Clock Rising edge, falling edge, high level, low level, period
- Setup time: Minimum time before clocking event by which input must be stable (T_{SU})
- Hold time: Minimum time after clocking event for which input must remain stable (T_H)
- Window: From setup time to hold time

Memory array structures Memory array structures Dynamic random access memory Homework

Reset/set latches

Clocking conventions D flip-flop Other memory elements

Gated RS latch



Memory array structures Memory array structures Dynamic random access memory Homework

Gated RS latch

Reset/set latches

D flip-flop Other memory elements

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Memory element properties

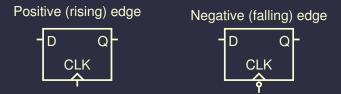
Туре	Inputs sampled	Outputs valid
Unclocked latch	Always	LFT
Level-sensitive latch	Clock high	LFT
	$(T_{SU}$ to T_H) around falling clock edge	
Edge-triggered flip-flop	Clock low-to-high transition	Delay from rising edge
	$(T_{SU}$ to $T_H)$ around rising clock edge	

Memory array structures Memory array structures Dynamic random access memory Homework

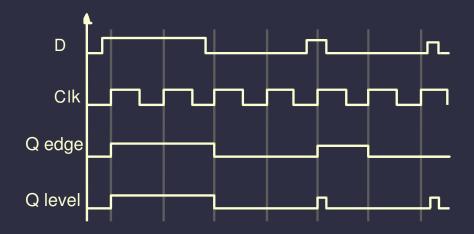
Section outline

Reset/set latches Clocking conventions D flip-flop Other memory elements

1. Latches and flip-flops Reset/set latches Clocking conventions D flip-flop Other memory elements


Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

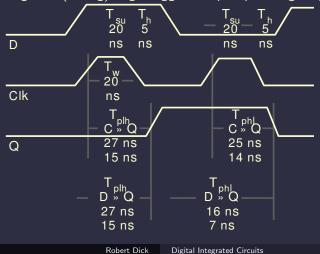
Clocking conventions


Active-low transparent

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Timing for edge and level-sensitive latches

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements


Latch timing specifications

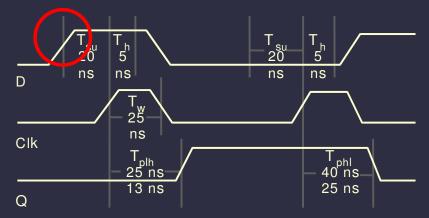
- Minimum clock width, T_W
 - Usually period / 2
- Low to high propegation delay, P_{LH}
- High to low propegation delay, P_{HL}
- Worst-case and typical

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Latch timing specifications

Example, negative (falling) edge-triggered flip-flop timing diagram

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements


FF timing specifications

- Minimum clock width, T_W
 - Usually period / 2
- Low to high propagation delay, P_{LH}
- High to low propagation delay, P_{HL}

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

FF timing specifications

Example, positive (rising) edge-triggered flip-flop timing diagram

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

RS latch states

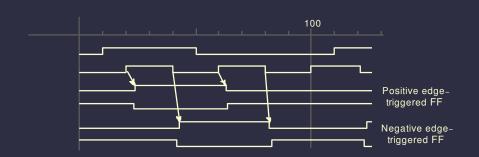
S	R	Q^+	\overline{Q}^+	Notes
0	0	Q	\overline{Q}	
0	1	0	1	
1	0	1	0	
1	1	1	1	unstable

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Section outline

1. Latches and flip-flops

Reset/set latches Clocking conventions D flip-flop Other memory elements


Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Falling edge-triggered D flip-flop

- Use two stages of latches
- When clock is high
 - First stage samples input w.o. changing second stage
 - Second stage holds value
- When clock goes low
 - First stage holds value and sets or resets second stage
 - Second stage transmits first stage
- $Q^+ = D$
- One of the most commonly used flip-flops

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Edge triggered timing

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions **D flip-flop** Other memory elements

RS clocked latch

- Storage element in narrow width clocked systems.
- Dangerous.
- Fundamental building block of many flip-flop types.

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

D flip-flop

- Minimizes input wiring.
- Simple to use.
- Common choice for basic memory elements in sequential circuits.

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

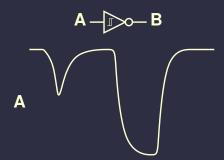
Toggle (T) flip-flops

- State changes each clock tick
- Useful for building counters
- Can be implemented with other flip-flops
 - D with XOR feedback

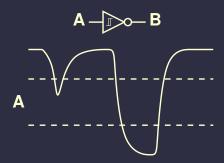
Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Asynchronous inputs

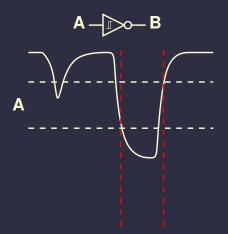
- How can a circuit with numerous distributed edge-triggered flip-flops be put into a known state?
- Could devise some sequence of input events to bring the machine into a known state.
 - Complicated.
 - Slow.
 - Not necessarily possible, given trap states.
- Can also use sequential elements with additional asynchronous reset and/or set inputs.

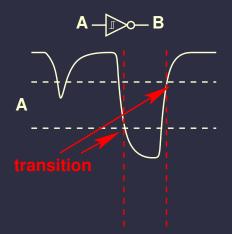

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

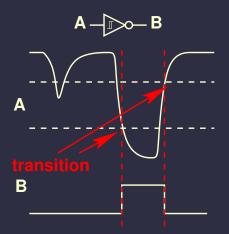
Section outline


1. Latches and flip-flops

Reset/set latches Clocking conventions D flip-flop Other memory elements


Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements


Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements


Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Reason for gradual transition

- A logic stage is an RC network
- Whenever a transition occurs, capacitance is driven through resistance
- Consider the implementation of a CMOS inverter

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Debouncing

- Mechanical switches bounce!
- What happens if multiple pulses?
 - Multiple state transitions
- Need to clean up signal

Memory array structures Memory array structures Dynamic random access memory Homework

Debouncing

Same and Sugar Schmidt trig. RC 0.75 1.65 -1.0e-03 -5.0e-04 0.0e+00 5.0e-04 1.0e-03 1.5e-03

Other memory elements

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Latch and flip-flop equations

RS $Q^+ = S + \overline{R} \ Q$ D $Q^+ = D$ T $Q^+ = T \oplus Q$

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Review

- What are t_{su} and t_h ?
- Define
 - Level-sensitive.
 - Edge-triggered.
 - Latch.
 - Flip-flop.
- What is the symbol for a falling edge triggered D flip-flop?
- Show a circuit design for a Schmitt-trigger inverter.

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

Distributed loads and Elmore delay

Derive the propagation delay of an aluminum wire that is 2 cm long and 500 nm wide. Does using a lumped model introduce significant error? You may assume a sheet resistance of $0.075 \Omega/\Box$. Derive the propagation delay of a copper wire with the same shape. State, and verify, any assumptions.

Memory array structures Memory array structures Dynamic random access memory Homework Reset/set latches Clocking conventions D flip-flop Other memory elements

More on transistor sizing

$$f(a,b,c) = \overline{ab+c}$$

Lecture plan

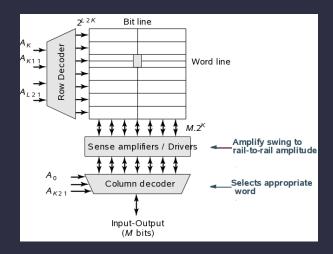
- 1. Latches and flip-flops
- 2. Memory array structures
- 3. Memory array structures
- 4. Dynamic random access memory
- 5. Homework

Volatile memory

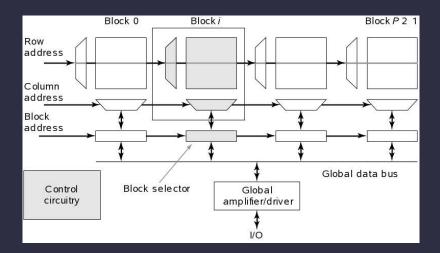
- SRAM cell and architecture overview.
- DRAM cell and architecture overview.

Non-volatile memory

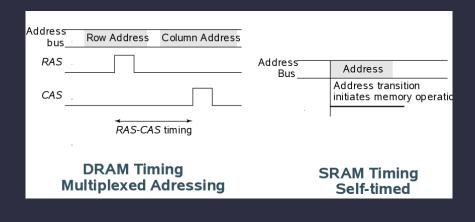
- ROM.
- EPROM.
- EEPROM.
- Flash.


Floating gate technology

- UV erase.
- Electrical erase.
- Block erase.

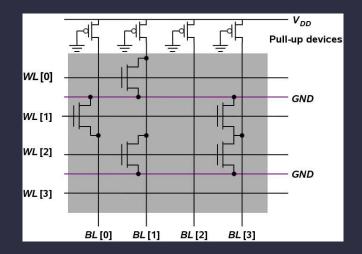

Hot floating gate implementation

- Was once difficult to design uniform-thickness thin oxide layers.
- Tunneling-based programming was difficult.
- Avalanche injection (hot electron) based programming used.
- UV erasure.
- Pure tunneling later became practical (EEPROM).
- Flash uses hot electrons for programming and tunneling for erasing.


Array memory architecture

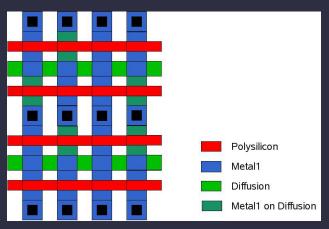
Block-based memory architecture

Memory timing

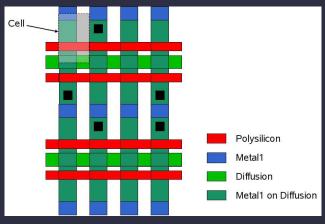

Review

- What are the different ways a floating-gate memory cell can be erased?
- What are the different ways a floating-gate memory cell can be programmed?
- What are the two main DRAM bit cell organizations, and their advantages?
- Why is it difficult to economically put DRAM on the same die as a processor?
- Why are decoders and MUXs used in memory arrays?

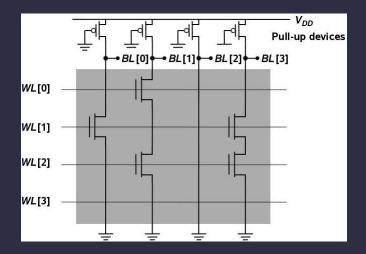
Lecture plan


- 1. Latches and flip-flops
- 2. Memory array structures
- 3. Memory array structures
- 4. Dynamic random access memory
- 5. Homework

NOR ROM schematic


Robert Dick Digital Integrated Circuits

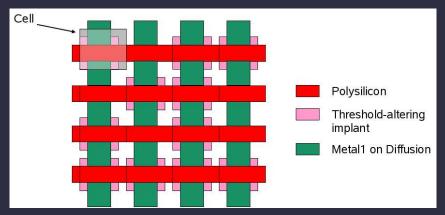
NOR ROM layout


Program using active layer.

NOR ROM layout

Program using contacts.

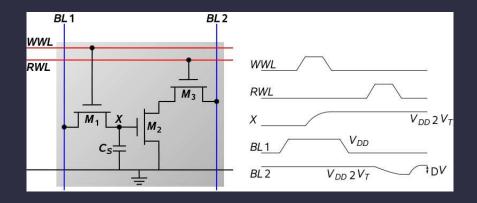
NAND ROM schematic



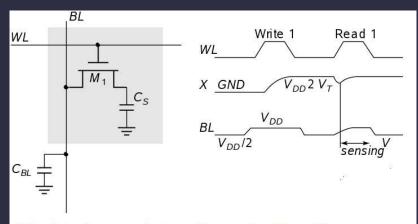
NAND ROM layout

Robert Dick Digital Integrated Circuits

NAND ROM layout

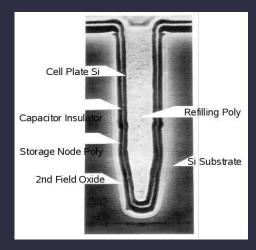

Program using implants.

Robert Dick Digital Integrated Circuits

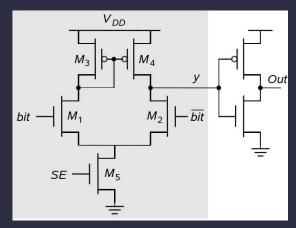

Lecture plan

- 1. Latches and flip-flops
- 2. Memory array structures
- 3. Memory array structures
- 4. Dynamic random access memory
- 5. Homework

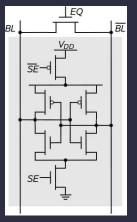
DRAM



DRAM

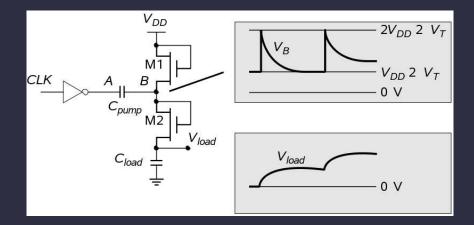

Write: C_S is charged or discharged by asserting WL and BL.

DRAM side view


Robert Dick Digital Integrated Circuits

Differential sense amplifier

Useful for SRAM, can use two stages.


Latch sense amplifier

Useful for DRAM.

Robert Dick Digital Integrated Circuits

Charge pump

Upcoming topics

• Theoretical foundations for sizing.

Lecture plan

- 1. Latches and flip-flops
- 2. Memory array structures
- 3. Memory array structures
- 4. Dynamic random access memory
- 5. Homework

Homework assignment I

• 31 October: Read Sections 6.3 and 7.1 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003.

• 7 November: Read Sections 7.2.2, 7.2.3, 7.3.1, 7.3.2, and 7.6.1

in J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003.

• 7 November: Project 4.

Homework assignment II

• 12 November: Read Sections 12.1.1, 12.1.2, and 12.2.1 in

J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003.

• 14 November: Read Sections 12.3.1, 12.3.2, 12.2.2, and 12.2.3 in

J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003.

• 16 November: Homework 4.