
Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Robert Dick GSI: Shengshou Lu
Office: 2417-E EECS Office: 2725 BBB
Email: dickrp@umich.edu Email: luss@umich.edu

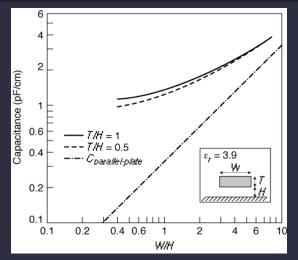
Phone: 734–763–3329 Cellphone: 847–530–1824

Review

- When are the advantages and disadvantages of fixed-voltage charging?
- When are the advantages and disadvantages of fixed-current charging?
- In what situation is each of the following models important?
 - Ideal.
 - C.
 - RC.
 - RLC.
- What are dI/dt effects? Under what circumstances do they cause the most trouble?

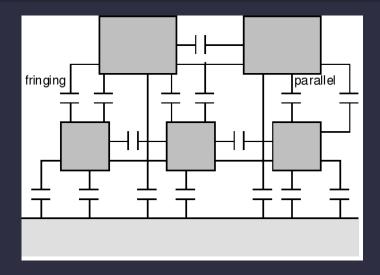
Derive and explain.

Lecture plan

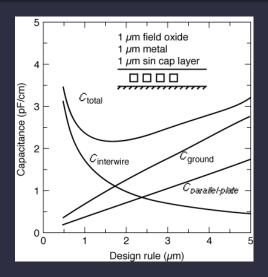

- 1. Interconnect: Rent's rule and coupling capacitance
- 2. Elmore delay modeling
- 3. Logic design
- 4. Homework

Rent's rule

$$T = ak^p$$


- T: Number of terminals.
- a: Average number of terminals per block.
- k: Number of blocks within chip.
- p: Rent's exponent, ≤ 1 , generally around 0.7.

Fringe vs. parallel plate capacitance



Plot of C_{total} for different gap ratios.

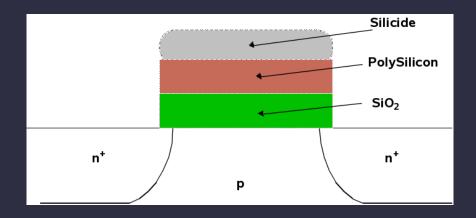
Inter-wire capacitance

Impact of inter-wire capacitance

Wire resistance

•
$$R = \frac{\rho L}{HW}$$
.

- Consider fixed-height, fixed- ρ square material, i.e., L/W=1.
- $R = \frac{\rho}{H}$.

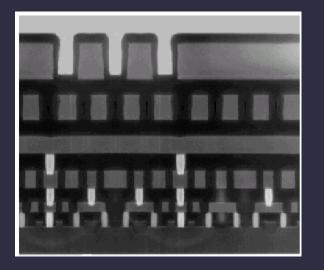

Interconnect resistance

Material	$ ho$ (Ω m) $ imes 10^{-8}$
Silver	1.6
Copper	1.7
Gold	2.2
Aluminum	2.7
Tungsten	5.5

Reducing resistance

- Higher interconnect aspect ratios
- Material selection
 - Copper
 - Silicides
 - Carbon nanotubes
- Structural changes
 - More interconnect layers
 - 3-D integration

Silicides


Resistances

Material	Sheet resistance (Ω/\Box)
n- or p-well diffusion	1,000-1,500
n^+ or p^+ diffusion	50–150
silicided n^+ or p^+ diffusion	3–5
doped polysilicon	150-200
doped silicides polysilicon	4–5
Aluminum	0.05-0.1

Multi-layer interconnect

Side view of interconnect

Interconnect summary

- It is important to know which interconnect model to use in which situation.
 - Ideal.
 - C.
 - RC.
 - RLC.
- dI/dt effects are particularly important in power delivery networks.
- · Capacitive coupling complicates design.
- Cu and silicides can be used to reduce resistance.

Lecture plan

- 1. Interconnect: Rent's rule and coupling capacitance
- 2. Elmore delay modeling
- 3. Logic design
- 4. Homework

Delay modeling

- Single-node lumped model inaccurate.
- Full detailed accurate model intractable for manual analysis and slow for automated analysis.
- Elmore delay model permits rapid analysis with often adequate accuracy.

Elmore delay

Problem definition

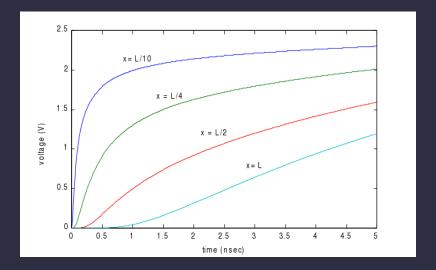
- Goal: Determine τ for RC path.
- Note: Source node is implicit.
- C_i: Self-capacitance of node i.
- Rii: Path resistance from source to node i.
- R_{ik} : Shared resistance from source to both nodes i and k.

$$\tau_i = \sum_{k=1}^N C_k R_{ik}$$

Derive and explain.

Special case: RC chains

- Consider π network.
- $\tau_n = \sum_{i=1}^n C_i \sum_{j=1}^i R_j$.
- Use homogeneous discretization.
- $\forall_{i=2}^N C_i = C_1$


$$\tau = \sum_{k=1}^{N} CR_{nk}$$
$$= \frac{L}{N} c \frac{L}{N} r \frac{N(N+1)}{2}$$
$$= rcL^{2} \frac{N+1}{2N}$$

What if $N o \infty$? $au o rcL^2/2$.

Underlying continuous physical model

$$cr\frac{\delta V}{\delta t} = \frac{\delta^2 V}{\delta x^2}$$

Response to step function over time and space

Power delivery network considerations

- IR drop.
- dI/dt effects.
- Location of parasitic inductance.
- Methods to correct power delivery network non-idealities.

Simplifying assumptions

 Ignore wire RC delay when wire delay does not much exceed that of the driving gate, i.e.,

$$L_{crit} \gg \sqrt{\frac{t_{p,gate}}{0.38rc}}$$

- Ignore wire RC when rise time greater than RC delay.
- Ignore for high-resistance wires: R > 0.2C.
- Ignore when time of flight is large compared to rise or fall time: $t_{rise,fall} < 2.5t_{flight}$.

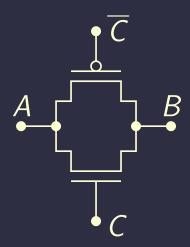
Elmore delay summary

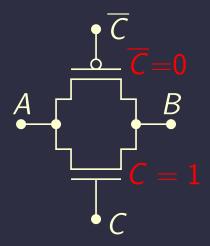
- Pick simplest model for intended purpose: C, RC, or RLC.
- Capacitive coupling complicates timing analysis.
- Transition direction impacts *C* magnitude in simplified ground-cap model.
- Learn Elmore delay. It is a good first-order approximation of network delay.

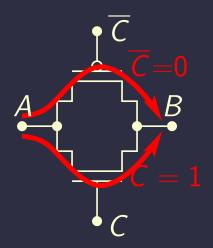
Lecture plan

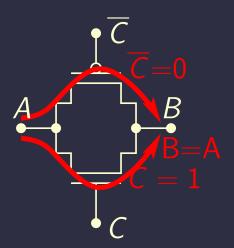
- 1. Interconnect: Rent's rule and coupling capacitance
- 2. Elmore delay modeling
- 3. Logic design
- 4. Homework

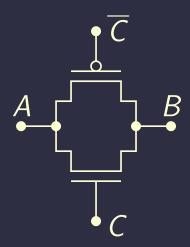
Static CMOS design styles and components

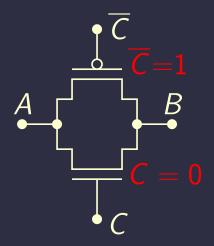

- Logic gates
- Switch-based design
- MUX
- DEMUX
- Encoder
- Decoder

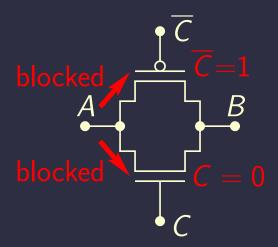

Transistor sizing review

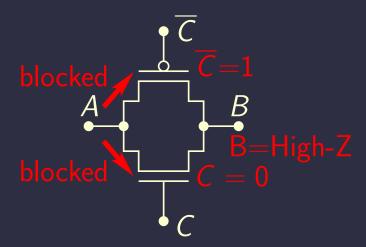

- Goal: equal τ for worst-case pull-up and pull-down paths.
- Observations
 - Adding duplicate parallel path halves resistance.
 - Adding duplicate series path doubles resistance.
 - Doubling width halves resistance.
- Consider logic gate examples.

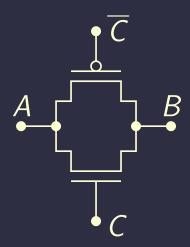

Section outline

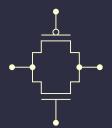

3. Logic design
Switch-based design









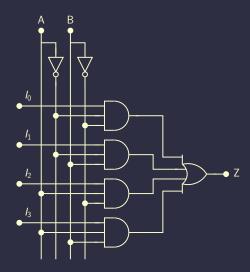




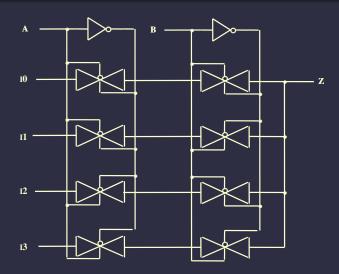
CMOS transmission gate (TG)

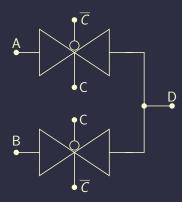
Other TG diagram

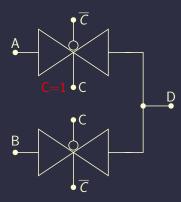
Multiplexer (MUX) definitions

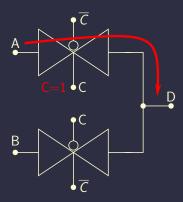

- Also called selectors
- 2ⁿ inputs
- n control lines
- One output

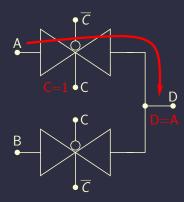
MUX functional table

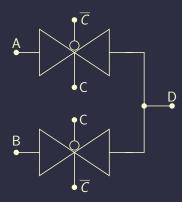

MUX truth table

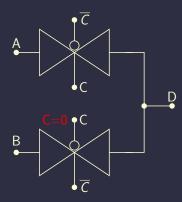

0 0 0 0	
0 0 1 0	
0 1 0 1	
0 1 1 0	
1 0 0 0	
1 0 1 1	
1 1 0 1	
1 1 1 1	

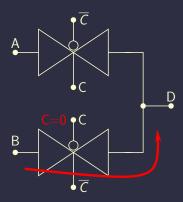

MUX using logic gates

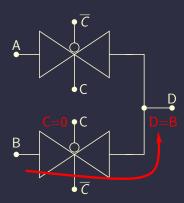


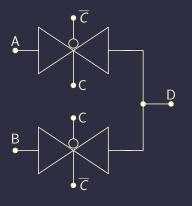

MUX using TGs

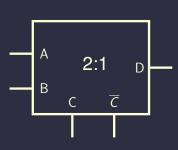


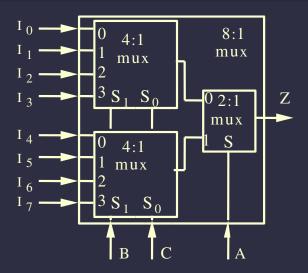


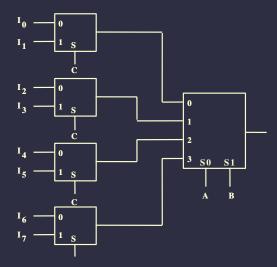




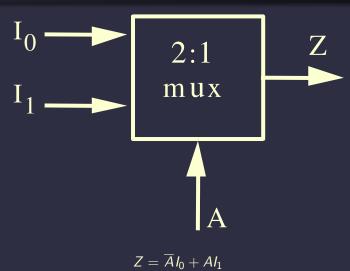




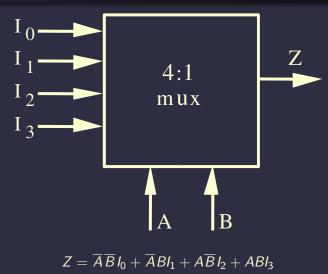




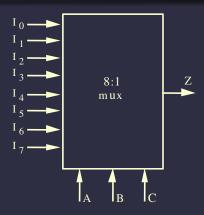
Hierarchical MUX implementation



Alternative hierarchical MUX implementation



38


MUX examples

MUX examples

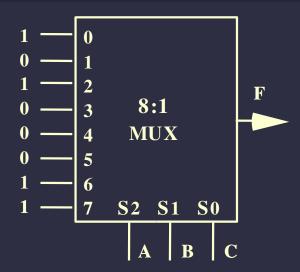
MUX examples

$$Z = \overline{A} \overline{B} \overline{C} I_0 + \overline{A} \overline{B} C I_1 + \overline{A} B \overline{C} I_2 + \overline{A} B C I_3 + A \overline{B} \overline{C} I_4 + A \overline{B} C I_5 + A B \overline{C} I_6 + A B C I_7$$

MUX properties

- A 2^n : 1 MUX can implement any function of n variables
- A 2^{n-1} : 1 can also be used
 - Use remaining variable as an input to the MUX

MUX example


$$F(A, B, C) = \sum_{\overline{A}B} (0, 2, 6, 7)$$

= $\overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$

43

Truth table

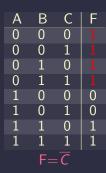
Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Lookup table implementation

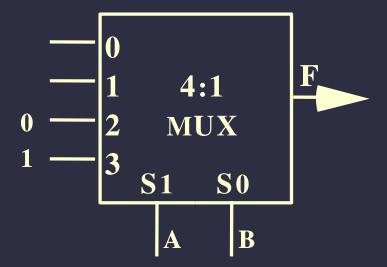
MUX example

$$F(A, B, C) = \sum_{\overline{A}} (0, 2, 6, 7)$$

= $\overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} + ABC$


Therefore,

$$\overline{AB} \rightarrow F = \overline{C}$$
 $\overline{AB} \rightarrow F = \overline{C}$
 $A\overline{B} \rightarrow F = 0$
 $AB \rightarrow F = 1$


Truth table

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Truth table

Lookup table implementation

Logic design summary

- Logic gate, transmission gate, and pass transistor design each have applications.
- MUX-based design provides a good starting point for transmission gate and pass transistor based design.

Examples

Instead of flying through a bunch of slides, let's try examples.

- f(a) = a.
- $f(a) = \overline{a}$
- $f(a,b) = a\overline{b}$
- f(a, b) = ab (Check Figure 6-33 in J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*. Prentice-Hall, second edition, 2003!)
- $f(a,b,c) = ab + \overline{b}c$ (try both ways).

Derive and explain.

Upcoming topics

- Alternative logic design styles.
- Latches and flip-flops.
- Memories.

Lecture plan

- 1. Interconnect: Rent's rule and coupling capacitance
- 2. Elmore delay modeling
- 3. Logic design
- 4. Homework

Homework assignment

- 22 October: Read sections 4.4.1, 4.4.4, and 9.3.3 in J. Rabaey,
 - A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.
 - Prentice-Hall, second edition, 2003.
- 24 October: Read sections 6.2.2 and 6.2.3 in J. Rabaey,
 - A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.
 - Prentice-Hall, second edition, 2003.
- 25 October: Lab 3.
- 29 October: Homework 3.