EECS 312 Discussion 5

10/4 Shengshuo Lu (luss@umich.edu)

Overview

- Reminder
 - HW 2: Due Oct 10
 - Midterm: 8 October 19:00-20:30 in 1670 BBB
 - Close book. One sheet note.

A unified model

- $2\varphi_F$ is negative in NMOS and positive in PMOS
- Y is positive in NMOS and negative in PMOS
- If $V_{SB}=0$, simply $V_T=V_{T0}$

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_T, \\ \text{and } V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|}) \end{split}$$

- If V_{DS} is minimum:
 Linear region
- If V_{GT} is minimum:
 Saturation Region
- If V_{DSAT} is minimum :
 Velocity saturated region

CMOS Process

Cross-Sectional View

Inverter Layout

5 Important MOSFET Capacitances

Gate-to-channel Capacitance (C_{GC})

Cut-off

Resistive

Saturation

Operation Region	C _{GCB}	C _{GCS}	C _{GCD}
Cutoff	C _{ox} WL _{eff}	0	0
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0

Most important regions in digital design: saturation and cut-off

Properties of Static CMOS gates

- Voltage swing=supply voltage (full swing)
- Logic level is not dependent upon the relative device sizes (ratioless)
- A path with finite resistance between the output and V_{DD} or GND
- Input resistance is extremely high
- No direct path exists between supply and ground under steady-stage

CMOS inverter- Intuitive Perspective

Power

- Dynamic Power
- Static Power

Short-Circuit Power *

Power

$$P = P_{SWITCH} + P_{SHORT} + P_{LEAK}$$

$$P_{SWITCH} = C \cdot V_{DD}^2 \cdot f \cdot A$$

$$\dagger P_{SHORT} = \frac{b}{12} (V_{DD} - 2 \cdot V_T)^3 \cdot f \cdot A \cdot t$$

 $P_{LEAK} = V_{DD} \cdot (I_{SUB} + I_{GATE} + I_{JUNCTION} + I_{GIDL})$

- C: total switched capacitance V_{DD} : high voltage
- f : switching frequency
- b: MOS transistor gain

- A : switching activity
- V_T : threshold voltage

- t : rise/fall time of inputs
 - $\dagger P_{SHORT}$ usually $\leq 10\%$ of P_{SWITCH}

Smaller as $V_{DD} \rightarrow V_T$ A < 0.5 for combinational nodes, 1 for clocked nodes.