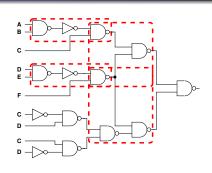


- Need to map to efficient implementation in target technology
- Target technology consists of a set of gates
- Each has area, power consumption, and timing properties
- Map to those gates minimizing some combination of area, power, and delay

Robert Dick Advanced Digital Logic Design

Technology mapping Homework	Overview Binate covering formulation Tree covering formulation Decomposition
Technology mapping example	e library


gate	area cost
NOT	1
NAND2	2
NAND3	3
NAND4	4
XNOR2	5
ANDOR4	4

7 Robert Dick	Advanced Digital Logic Design
Technology mapping Homework	Overview Binate covering formulation Tree covering formulation Decomposition
Technology mapping for area as binate covering	

- Find all possible matches
- However, complete cover insufficient
 - Need match outputs to align with inputs of other matches

Robert Dick Advanced Digital Logic Design

• Can represent problem as binate covering

• Library: NOT, NAND2, NAND3, ANDOR4 (AO4), and XNOR

Robert Dick Advanced Digital Logic D

Decide minimal area/delay/power cost mapping from logic tree to

Technology m

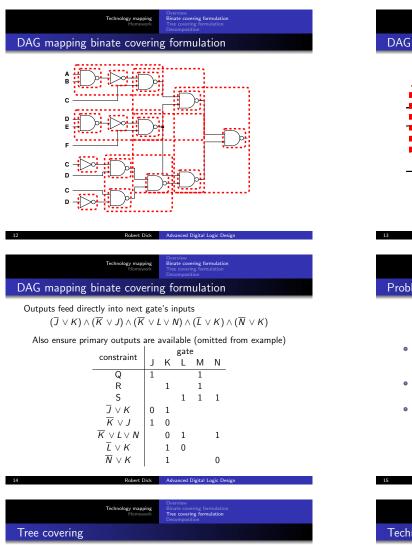
Potentially overlapping maps

rt Dick

ology mapping

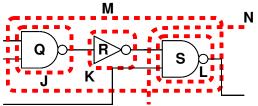
Binate covering

gates


technology library

term	column			
term	А	В	С	D
J_1	1			
J_2	1	1		
J_3		1	1	
J_4			1	1
J_5	1		0	

Robert Dick Advanced Digital Logic

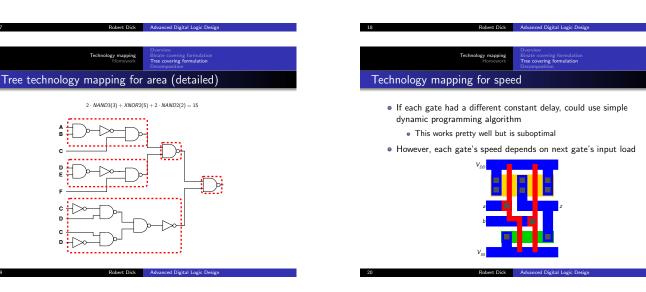

• Find a set of columns, S, such that, for every row • A 1-colum in the row is in S or...

• ... a 0-column in the row is not in S

- Split DAG at multiple output nodes to form trees
- Optimally and quickly map trees using dynamic programming
- Reconnect result into a DAG
- Locally improve connection points
- Result: Nearly (but not quite) optimal, fast DAG mapping

Technology mapping Homework	Binate covering formulation Tree covering formulation Decomposition
mapping binate coverin	g formulation

$(\overline{J} \lor K) \land (\overline{K} \lor J) \land (\overline{K} \lor L \lor N) \land (\overline{L} \lor K) \land (\overline{N} \lor K)$

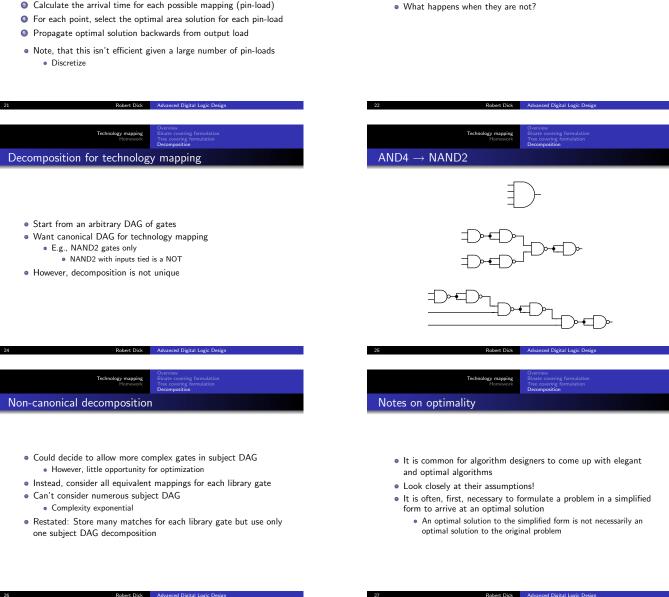


Technology mapping for area complexity

- Reduced logic tree RLT = (V, E)
- Technology library with T gates
- $\bullet\,$ Maximum gate size of S, i.e., no gate covers more than S vertices

Algorithm is

- Linear in |V|
- Linear in T
- Exponential in S



Technology mapping

Two-pass delay optimization

Problem: Optimize area under timing constraint

- Ind the set of all possible pin-loads
- Irom leafs, build array of minimal-area solutions, one for each pin-load
- Salculate the arrival time for each possible mapping (pin-load)

- The technology mapping algorithms in this lecture are polynomial-time (fast) and optimal...
- ... however, they aren't polynomial-time (fast) in every term • Maximum library gate size
- ... or optimal for the original problem
 - The original problem can be a DAG, instead of a tree
 - The decomposition is not unique
 - · Better solutions might be possible for other decompositions

Robert Dick Advanced Digital Logic D

- ogy mapping
- Notes on optimality
 - The algorithms are high-quality and efficient

Technology mapping

Technology mapping

• Are circuits really trees?

- However
 - They are only optimal with respect to the simplified inputs
 - . They are only polynomial in the most important terms
- This situation is very common in EDA/CAD because the original problems are often $\mathcal{NP}\text{-}\mathrm{complete}$
 - Too slow to solve for large problem instances
- Whenever you see or use the word "optimal", think very carefully about what is meant

Robert Dick Advanced Digital Logic

Technology mapping

Technology mapping summary

- Technology mapping is taking a set of functions and determining how to implement them using gates from a library
- Optimal and fast approaches exist for trees
- However, no optimal solution is known for arbitrary circuit topologies
- $\bullet\,$ This is what you are doing when you type "map" in SIS

Next lecture

Robert Dick Advanced Digital Logic De

- Multipliers and ALUs
- Sequential logic networks
- Latches (RS Latch)
- Flip-flops (D and JK)
- Timing issues (setup and hold times)

Technology mapping

30	Robert Dick	Advanced Digital Logic Design	
	Technology mapping Homework		
_			
Reading as	signment		

• M. Morris Mano and Charles R. Kime. *Logic and Computer Design Fundamentals*. Prentice-Hall, NJ, third edition, 2004

Robert Dick Advanced Digital Logic Design

• Chapter 5

33