
Advanced Digital Logic Design – EECS 303

http://ziyang.eecs.northwestern.edu/eecs303/

Teacher: Robert Dick
Office: L477 Tech
Email: dickrp@northwestern.edu
Phone: 847–467–2298

Technology mapping
Homework

Today’s topics

Technology mapping

Binate covering
Tree mapping

Arithmetic circuits

Number systems
Adders

2 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping

We know how to minimize two-level and multi-level logic

Generally expressed in terms of simple gates, e.g., NAND2s and
NOTs

Need to map to efficient implementation in target technology

Target technology consists of a set of gates

Each has area, power consumption, and timing properties

Map to those gates minimizing some combination of area, power,
and delay

5 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping

Given:

Simplified and decomposed (reduced) logic graph (DAG)

Tree makes things easier

Composed of NOT and NAND2 gates

Library: NOT, NAND2, NAND3, ANDOR4 (AO4), and XNOR
gates

Decide minimal area/delay/power cost mapping from logic tree to
technology library

6 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping example library

gate area cost

NOT 1
NAND2 2
NAND3 3
NAND4 4
XNOR2 5

ANDOR4 4

7 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Potentially overlapping maps

A

B

E

D

C

D

C

D

C

F

8 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping for area as binate covering

Find all possible matches

However, complete cover insufficient

Need match outputs to align with inputs of other matches

Can represent problem as binate covering

10 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Binate covering

term
column

A B C D

J1 1
J2 1 1
J3 1 1
J4 1 1
J5 1 0

Find a set of columns, S , such that, for every row

A 1-colum in the row is in S or. . .
. . . a 0-column in the row is not in S

11 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

DAG mapping binate covering formulation

A

B

E

D

C

D

C

D

C

F

12 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

DAG mapping binate covering formulation

Q R
S

Q

J
L

M
N

K

R
S

(J ∨ K) ∧ (K ∨ J) ∧ (K ∨ L ∨ N) ∧ (L ∨ K) ∧ (N ∨ K)

13 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

DAG mapping binate covering formulation

Outputs feed directly into next gate’s inputs

(J ∨ K) ∧ (K ∨ J) ∧ (K ∨ L ∨ N) ∧ (L ∨ K) ∧ (N ∨ K)

Also ensure primary outputs are available (omitted from example)

constraint
gate

J K L M N

Q 1 1
R 1 1
S 1 1 1

J ∨ K 0 1

K ∨ J 1 0

K ∨ L ∨ N 0 1 1

L ∨ K 1 0

N ∨ K 1 0

14 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Problems with binate covering

Although there are good heuristics to speed up unate covering,
binate covering appears to be a harder problem

Intractable for large problem instances

Cost function must be independent of other portions of solution

Can use area but can’t use delay or power

Can use a fast alternative for tree, not DAG covering

15 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Tree covering

Split DAG at multiple output nodes to form trees

Optimally and quickly map trees using dynamic programming

Reconnect result into a DAG

Locally improve connection points

Result: Nearly (but not quite) optimal, fast DAG mapping

17 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping for area complexity

Reduced logic tree RLT = (V , E)

Technology library with T gates

Maximum gate size of S , i.e., no gate covers more than S vertices

Algorithm is

Linear in |V |

Linear in T

Exponential in S

18 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Tree technology mapping for area (detailed)

A

B

E

D

C

D

C

D

C

F

2 · NAND3(3) + XNOR2(5) + 2 · NAND2(2) = 15

19 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping for speed

If each gate had a different constant delay, could use simple
dynamic programming algorithm

This works pretty well but is suboptimal

However, each gate’s speed depends on next gate’s input load

V
SS

V
DD

b

a z

20 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Two-pass delay optimization

Problem: Optimize area under timing constraint

1 Find the set of all possible pin-loads

2 From leafs, build array of minimal-area solutions, one for each
pin-load

3 Calculate the arrival time for each possible mapping (pin-load)

4 For each point, select the optimal area solution for each pin-load

5 Propagate optimal solution backwards from output load

Note, that this isn’t efficient given a large number of pin-loads

Discretize

21 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping

Are circuits really trees?

What happens when they are not?

22 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Decomposition for technology mapping

Start from an arbitrary DAG of gates

Want canonical DAG for technology mapping
E.g., NAND2 gates only

NAND2 with inputs tied is a NOT

However, decomposition is not unique

24 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

AND4 → NAND2

25 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Non-canonical decomposition

Could decide to allow more complex gates in subject DAG

However, little opportunity for optimization

Instead, consider all equivalent mappings for each library gate

Can’t consider numerous subject DAG

Complexity exponential

Restated: Store many matches for each library gate but use only
one subject DAG decomposition

26 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Notes on optimality

It is common for algorithm designers to come up with elegant
and optimal algorithms

Look closely at their assumptions!

It is often, first, necessary to formulate a problem in a simplified
form to arrive at an optimal solution

An optimal solution to the simplified form is not necessarily an
optimal solution to the original problem

27 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Notes on optimality

The technology mapping algorithms in this lecture are
polynomial-time (fast) and optimal. . .

. . . however, they aren’t polynomial-time (fast) in every term

Maximum library gate size

. . . or optimal for the original problem

The original problem can be a DAG, instead of a tree
The decomposition is not unique

Better solutions might be possible for other decompositions

28 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Notes on optimality

The algorithms are high-quality and efficient

However

They are only optimal with respect to the simplified inputs
They are only polynomial in the most important terms

This situation is very common in EDA/CAD because the original
problems are often NP-complete

Too slow to solve for large problem instances

Whenever you see or use the word “optimal”, think very carefully
about what is meant

29 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Technology mapping summary

Technology mapping is taking a set of functions and determining
how to implement them using gates from a library

Optimal and fast approaches exist for trees

However, no optimal solution is known for arbitrary circuit
topologies

This is what you are doing when you type “map” in SIS

30 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Overview
Binate covering formulation
Tree covering formulation
Decomposition

Next lecture

Multipliers and ALUs

Sequential logic networks

Latches (RS Latch)

Flip-flops (D and JK)

Timing issues (setup and hold times)

31 Robert Dick Advanced Digital Logic Design

Technology mapping
Homework

Reading assignment

M. Morris Mano and Charles R. Kime. Logic and Computer
Design Fundamentals. Prentice-Hall, NJ, third edition, 2004

Chapter 5

33 Robert Dick Advanced Digital Logic Design

