Advanced Digital Logic Design - EECS 303
http://ziyang.eecs.northwestern.edu/eecs303/


NORTHWESTERN UNIVERSITY


Some Boolean functions can not be represented with one logic level

$$
(\bar{a} \bar{b})+(a b)
$$



- As we will see later, optimal minimization techniques known for two-level
- However, optimal two-level solution may not be optimal solution
- Sometimes a suboptimal solution to the right problem is better than the optimal solution to the wrong problem


| chmod -R |  |  |  |
| :--- | :--- | :--- | :--- |
| go-rwx | $\sim$ |  |  |
| Letter | Meaning | Letter | Meaning |
| u | user | r | read |
| g | group | w | write |
| o | other | $\times$ | execute |




- All Boolean functions can be represented with two logic levels
- Given $k$ variables, $2^{K}$ minterm functions exist
- Select arbitrary union of minterms


Consider a 4-term XOR (parity) gate: $a \oplus b \oplus c \oplus d$
$(\bar{a} \bar{b} \bar{c} d)+(\bar{a} \bar{b} c \bar{d})+(\bar{a} b \bar{c} \bar{d})+(\bar{a} b c d)+(a b \bar{c} d)+$
$(a b c \bar{d})+(a \bar{b} \bar{c} \bar{d})+(a \bar{b} c d)$


Two-level representations also have other weaknesses

- Conversion from SOP to POS is difficult
- Inverting functions is difficult
- --ing two SOPs or +ing two POSs is difficult
- Neither general POS or SOP are canonical
- Equivalence checking difficult
- POS satisfiability $\in \mathcal{N} \mathcal{P}$-complete


|  | Two-level logic properties <br> Two-level minimization <br> The Quine-McCluskey algorithm |
| :---: | :---: |
| Logic minimization motivation |  |

- K-maps work well for small problems
- Too error-prone for large problems
- Don't ensure optimal prime implicant selection
- Quine-McCluskey optimal and can be run by a computer
- Too slow on large problems
- Espresso heuristic usually gets good results fast on large problems

Prove $X Y+X \bar{Y}=X$

$$
\begin{aligned}
X Y+X \bar{Y} & =X(Y+\bar{Y}) \\
X(Y+\bar{Y}) & =X(1) \\
X(1) & =X
\end{aligned}
$$

distributive law

- Hard to exactly predict circuit area from equations
- Can approximate area with SOP cubes
- Minimize number of cubes and literals in each cube
- Algebraic simplification difficult
- Hard to guarantee optimality

- Algebraic simplification
- Not systematic
- How do you know when optimal solution has been reached?
- Optimal algorithm, e.g., Quine-McCluskey
- Only fast enough for small problems
- Understanding these is foundation for understanding more advanced methods
- Not necessarily optimal heuristics
- Fast enough to handle large problems


| $\Sigma=0$ | 0000 | $\begin{aligned} & \hline 000 X \\ & 00 \times 0 \\ & \times 000 \end{aligned}$ | $\begin{aligned} & \hline \text { XOOX } \\ & \text { XOXO } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\Sigma=1$ | $\begin{aligned} & \hline 0001 \\ & 0010 \\ & 1000 \end{aligned}$ | $\begin{aligned} & \hline \times 001 \\ & \times 010 \\ & 100 \times \\ & 10 \times 0 \end{aligned}$ |  |
| $\Sigma=2$ | $\begin{array}{r} 1001 \\ 1010 \\ \hline \end{array}$ | $\begin{aligned} & 1 \times 01 \\ & 1 \times 10 \\ & \hline \end{aligned}$ |  |
| $\Sigma=3$ | $\begin{array}{r} 11101 \\ 11110 \\ \hline \end{array}$ | $\begin{aligned} & \hline 111 \mathrm{X} \\ & 11 \mathrm{X} 1 \\ & \hline \end{aligned}$ |  |
| $\Sigma=4$ | 11111 |  |  |

Given a matrix for which all entries are 0 or 1 , find the minimum cardinality subset of columns such that, for every row, at least one column in the subset contains a 1 .

I'll give an example



|  |  |  | X01 | X10 | 10X |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | 1 |  | 1 |  |  |  |
| 011 | 1 | 1 |  |  |  |  |
| 010 |  | 1 |  | 1 |  |  |
| 100 |  |  |  |  | 1 | 1 |
| 101 |  |  | 1 |  | 1 |  |
| 110 |  |  |  | 1 |  | 1 |



|  | A | B | C |
| :--- | :--- | :--- | :--- |
| H |  | 1 |  |
| I | 1 |  | 1 |
| J | 1 | 1 |  |
| K |  | 1 | 1 |



|  | A | B | C |
| :--- | :--- | :--- | :--- |
| H | 1 |  |  |
| I | 1 | 1 |  |
| J | 1 |  | 1 |
| K |  | 1 |  |



3 disjoint rows $\rightarrow 3$ columns required

- Eliminate rows covered by essential columns
- Eliminate rows dominated by other rows
- Eliminate columns dominated by other columns

- Will proceed to complete solution unless cyclic
- If cyclic, can bound cover size
- Compute independent sets

- Eliminate rows covered by essential columns
- Eliminate rows dominated by other rows
- Eliminate columns dominated by other columns
- Branch-and-bound on cyclic problems - Use independent sets to bound
- Speed improved, still $\in \mathcal{N} \mathcal{P}$-complete


Polynomial-time algorithms: $\mathcal{O}(n), \mathcal{O}(n \lg n), \mathcal{O}\left(n^{2}\right)$



- Any $\mathcal{N} \mathcal{P}$-complete problem instance can be converted to any other $\mathcal{N} \mathcal{P}$-complete problem instance in polynomial time (quickly)
- Nobody has ever developed a polynomial time (fast) algorithm that optimally solves an $\mathcal{N} \mathcal{P}$-complete problem
- It is generally believed (but not proven) that it is not possible to devise a polynomial time (fast) algorithm that optimally solves an $\mathcal{N} \mathcal{P}$-complete problem
- Can use heuristics
- Fast algorithms that often produce good solutions


There also exist exponential-time algorithms: $\mathcal{O}\left(2^{\lg n}\right), \mathcal{O}\left(2^{n}\right), \mathcal{O}\left(3^{n}\right)$



- Digital design and synthesis is full of NP-complete problems
- Graph coloring
- Scheduling
- Graph partitioning
- Satisfiability (and 3SAT)
- Covering
- ... and many more


There also exist exponential-time algorithms: $\mathcal{O}\left(2^{\lg n}\right), \mathcal{O}\left(2^{n}\right), \mathcal{O}\left(3^{n}\right)$



Recall that sorting may be done in $\mathcal{O}(n \lg n)$ time DFS $\in \mathcal{O}(|V|+|E|)$, BFS $\in \mathcal{O}(|V|)$, Topological sort $\in$


$$
\mathcal{O}(|V|+|E|)
$$



For $t(n)=2^{n}$ seconds
$t(1)=2$ seconds
$t(10)=17$ minutes
$t(20)=12$ days
$t(50)=35,702,052$ years
$t(100)=40,196,936,841,331,500,000,000$ years


- There is a class of problems, $\mathcal{N} \mathcal{P}$-complete, for which nobody has found polynomial time solutions
- It is possible to convert between these problems in polynomial time
- Thus, if it is possible to solve any problem in $\mathcal{N} \mathcal{P}$-complete in polynomial time, all can be solved in polynomial time
- Unproven conjecture: $\mathcal{N P} \neq \mathcal{P}$

- What is $\mathcal{N} \mathcal{P}$ ? Nondeterministic polynomial time.
- A computer that can simultaneously follow multiple paths in a solution space exploration tree is nondeterministic. Such a computer can solve $\mathcal{N} \mathcal{P}$ problems in polynomial time.
- I.e., a computer that can simultaneously be in multiple states.
- Nobody has been able to prove either

$$
\mathcal{P} \neq \mathcal{N} \mathcal{P}
$$

or

$$
\mathcal{P}=\mathcal{N P}
$$



- $\mathcal{P}$ solvable in polynomial time by a computer (Turing Machine)
- $\mathcal{N P}$ solvable in polynomial time by a nondeterministic computer
- $\mathcal{N} \mathcal{P}$-complete converted to other $\mathcal{N} \mathcal{P}$-complete problems in polynomial time

O. Coudert. Exact coloring of real-life graphs is easy. Design Automation, pages 121-126, June 1997.
- For difficult and large functions, solve by heuristic search
- Multi-level logic minimization is also best solved by search
- The general search problem can be introduced via two-level minimization
- Examine simplified version of the algorithms in Espresso

If we define $\mathcal{N} \mathcal{P}$-complete to be a set of problems in $\mathcal{N P}$ for which any problem's instance may be converted to an instance of another problem in $\mathcal{N} \mathcal{P}$-complete in polynomial time, then

$$
\mathcal{P} \subsetneq \mathcal{N} \mathcal{P} \Rightarrow \mathcal{N} \mathcal{P} \text {-complete } \cap \mathcal{P}=\varnothing
$$

- What should you do when you encounter an apparently hard problem?
- Is it in $\mathcal{N} \mathcal{P}$-complete?
- If not, solve it
- If so, then what?

Despair. Solve it! Resort to a suboptimal heuristic.
Bad, but sometimes the only choice. Develop an approximation algorithm.
Better. Determine whether all encountered problem instances are constrained.
Wonderful when it works.


Optimal two-level logic synthesis is $\mathcal{N} \mathcal{P}$-complete

- Upper bound on number of prime implicants grows $3^{n} / n$ where $n$ is the number of inputs
- Given > 16 inputs, can be intractable
- However, there have been advances in complete solvers for many functions
- Optimal solutions are possible for some large functions

- Generate only a subset of prime implicants
- Carefully selects subset of prime implicants covering on-set
- Guaranteed to be correct
- May not be optimal




## Can be viewed in the following

- Start with a potentially optimal algorithm
- Add numerous techniques for constraining the search space
- Uses efficient move order to allow pruning
- Disable backtracking to arrive at a heuristic solver
- Widely used in industry
- Still has room for improvement - E.g., early recursion termination

- Algebraic manipulation (Review)
- K-Maps (Review)
- Quine-McCluskey
- Espresso

- More on Espresso algorithm
- Technologies and implementation methods
- Properties of two-level logic
- The Quine-McCluskey (tabular) method
- $\mathcal{N} \mathcal{P}$-complete: Why use heuristics?
- Espresso

- http://www.writphotec.com/mano/reading_supplements.html
- More Optimization for Quine-McCluskey

Reading assignment

