Advanced Digital Logic Design - EECS 303
http://ziyang.eecs. northwestern.edu/eecs303/

| Teacher: | Robert Dick |
| :--- | :--- |
| Office: | Lu77 Tech |
| Email: | dickrp@northwestern.edu |
| Phone: | $847-467-2298$ |
|  |  |

NORTHWESTERN UNIVERSITY

## Arithmetic/logic operations

- Shift left
- Fast, multiplication by two
- Shift right
- Fast, division by two
- Bit-wise operations
- AND, OR, NOT, NAND, NOR, XOR, and XNOR

- Administration
- Number systems
- Adders
- Ripple carry
- Carry lookahead
- Carry select


Given an $n$-bit number in which $d_{i}$ is the $i$ th digit, the number is $\sum_{i=1}^{n} 2^{i-1} d_{i}$

- Increment
- Addition
- Negation
- Subtraction
- Multiplication
- Slow or large
- Division
- Slow or large

- Number systems review
- Adders
- Multipliers
- Memory overview
- Representation of positive numbers same in most systems
- A few special-purpose alternatives exist, e.g., Gray code
- Alternatives exist for signed numbers


Consider adding 9 (1001) and 3 (0011)

| $+\quad 0 \quad 0$ | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 11100 |  |  |

Why an extra column?

| Addition and subtraction |
| :--- | :--- |
| Multipicition |
| Homework |$\quad$| Ovenvew |
| :--- |
| Number systems |
| Adders |

- If the result of an operation can't be represented in the available number of bits, an overflow occurs
- E.g., $0110+1011=10001$
- Need to detect overflow

- To convert from a standard binary number to a Gray code number XOR the number by it's half (right-shift it)
- To convert from a Gray code number to a standard binary number, XOR each binary digit with the parity of the higher digits

Given that a number contains $n$ digits and each digit, $d_{i}$, contributes $2^{i-1}$ to the number

$$
\begin{aligned}
\mathcal{P}_{j}^{k} & =d_{j} \oplus d_{j+1} \cdots \oplus d_{k-1} \oplus d_{k} \\
d_{i} & =d_{i} \oplus \mathcal{P}_{i+1}^{n}
\end{aligned}
$$



- Four-bit machine word
- 16 values can be represented
- Approximately half are positive
- Approximately half are negative
,
- Two's complement

- $d_{n}$ represents sign

$$
\text { - } 0 \text { is positive, } 1 \text { is negative }
$$

- Two representations for zero
- What is the range for such numbers?
- Range: $\left[-2^{n-1}+1,2^{n-1}-1\right]$

| $\begin{array}{c}\text { Addition and subtraction } \\ \text { Mutipicication } \\ \text { Homework }\end{array}$ | $\begin{array}{l}\text { Overview } \\ \text { Number systems } \\ \text { Adders }\end{array}$ |
| :--- | :--- |
| Sign and magnitude |  |

$\left.\begin{array}{|l|l|}\hline \text { Addition and subtraction } \\ \text { Multpication } \\ \text { Homework }\end{array}\right)\left|\begin{array}{l}\text { Oveniew } \\ \text { Numbers systems } \\ \text { Adders }\end{array}\right|$

- Consider $5+-6$
- Note that signs differ
- Use magnitude comparison to determine large magnitude: 6-5
- Subtract smaller magnitude from larger magnitude: 1
- Use sign of large magnitude number: -1


Consider adding -5 (1010) and 7 (0111)



- Only one zero
- Leads to more natural comparisons
- One more negative than positive number
- This difference is irrelevant as $n$ increases
- Substantial advantage - Addition is easy!

- No looped carry - Only one addition necessary
- If carry-in to most-significant bit $\neq$ carry-out to most-significant bit, overflow occurs
- What does this represent?
- Both operands positive and have carry-in to sign bit
- Both operands negative and don't have carry-in to sign bit


For two's complement, don't need subtracter

| A | B | cout | sum |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

cout $=A B$
sum $=A \oplus B$


> sum $=A \oplus B \oplus c i n$
> cout $=A B+A c i+B c i$

$A B+c i(A \oplus B)=A B+B c i+A c i$


- Carry generate: $G=A B$
- Carry propagate: $P=A \oplus B$
- Represent sum and cout in terms of $G$ and $P$
- Consider adding two 32-bit numbers
- 64 gate delays
- Too slow!
- Consider faster alternatives


Flatten carry equations

$$
\begin{aligned}
& \operatorname{cin}_{1}=G_{0}+P_{0} \operatorname{cin}_{0} \\
& \operatorname{cin}_{2}=G_{1}+P_{1} \operatorname{cin}_{1}=G_{1}+P_{1} G_{0}+P_{1} P_{0} \operatorname{cin}_{0} \\
& \operatorname{cin}_{3}=G_{2}+P_{2} \operatorname{cin}_{2}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} \operatorname{cin}_{0} \\
& \operatorname{cin}_{4}=G_{3}+P_{3} C_{3}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+ \\
& \quad P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} \text { cin } \\
& \quad \text { Each cin can be implemented in three-level logic }
\end{aligned}
$$



- Assume a 4-stage adder with CLA
- Propagate and generate signals available after 1 gate delays
- Carry signals for slices 1 to 4 available after 3 gate delays
- Sum signal for slices 1 to 4 after 4 gate delays

- Trade even more hardware for faster carry propagation
- Break a ripple carry adder into two chunks, low and high
- Implement two high versions
- high $_{0}$ computes the result if the carry-out from low is 0
- high $_{1}$ computes the result if the carry-out from low is 1
- Use a MUX to select a result once the carry-out of low is known
- $\mathrm{high}_{0}$ 's cout is never greater than $\mathrm{high}_{1}$ 's cout so special-case MUX can be used

- No carry chain slowing down computation of most-significant bit - Computation in parallel
- More area required
- Each bit has more complicated logic than the last
- Therefore, limited bit width for this type of adder
- Can chain multiple carry lookahead adders to do wide additions
- Note that even this chain can be accelerated with lookahead
- Use internal and external carry lookahead units

- Four-stage 16 -bit adder
- cin for MSB available after five gate delays
- sum for MSB available after eight gate delays
- 16-bit ripple-carry adder takes 32 gate delays
- Note that not all gate delays are equivalent
- Depends on wiring, driven load
- However, carry lookahead is usually much faster than ripple-carry

| $\begin{array}{c}\text { Addition and subtraction } \\ \text { Multiplication } \\ \text { Homework }\end{array}$ | $\begin{array}{l}\text { Overview } \\ \text { Nuber systems } \\ \text { Adders }\end{array}$ |
| :--- | :--- |
| Delay analysis of carry select adder |  |



- Digital logic circuits frequently need to carry out arithmetic operations
- Addition, subtraction, and multiplication
- A number of design decisions affect the performance, area, and power consumption of arithmetic sub-circuits
- Number systems
- Trade-off between area/power consumption and speed

- Multiplication is the repeated application addition of ANDed bits and shifting (multiplying by two)
- Multiplication is the sum of the products of each bit of one operand with the other operand
- Consequence: A product has double the width of its operands


Recall that multiplying a number by two shifts it to the left one bit

$$
\begin{aligned}
6 \cdot 3 & =6 \cdot\left(2^{2} \cdot 0+2^{1} \cdot 1+2^{0} \cdot 1\right) \\
& =6 \cdot 2^{2} \cdot 0+6 \cdot 2^{1} \cdot 1+6 \cdot 2^{0} \cdot 1
\end{aligned}
$$

$110 \cdot 011=11000 \cdot 0+1100 \cdot 1+110 \cdot 1$
$=110+1100$
$=10010$
$=18$


- Direct implementation of this scheme possible
- Partial products formed with ANDs
- For four bits, 12 adders and 16 gates to form the partial products - 88 gates
- Note that the maximum height (number of added bits) is equal to the operand width

Consider multiplying 6 (110) by 3 (011)

$$
\begin{aligned}
& \begin{array}{r}
1110 \\
\times \quad 011 \\
\hline 110
\end{array} \\
& 110 \\
& \begin{array}{llllll}
+ & 0 & 0 & 0 & & \\
+0 & 1 & 0 & 0 & 1 & 0
\end{array}
\end{aligned}
$$



$$
\begin{array}{lccccc} 
& & & A_{2} & A_{1} & A_{0} \\
& & \times & B_{2} & B_{1} & B_{0} \\
\cline { 3 - 6 } & & A_{2} B_{0} & A_{1} B_{0} & A_{0} B_{0} \\
& & A_{2} B_{1} & A_{1} B_{1} & A_{0} B_{1} & \\
& & A_{2} B_{2} & A_{1} B_{2} & A_{0} B_{2} & \\
+ & \text { sum }_{5} & \text { sum }_{4} & \text { sum }_{3} & \text { sum }_{2} & \text { sum }_{1} \\
\text { sum }_{0}
\end{array}
$$



- Increment
- Addition
- Negation
- Subtraction
- Multiplication
- Slow or large
- Division
- Slow or large

- Can iteratively one row of adders to carry out multiplications
- Advantage: Area reduced to approximately its square root
- Disadvantage: Takes $n$ clock cycles, where $n$ is the operand bit width
- Possible to implement functional units that can carry out many arithmetic and logic operations with little additional area or delay overhead
- Already saw example: Combined adder/subtracter
- Other operations possible
- Could you generalize the approach used for two's compliment addition and subtraction to another pair of operations?

- Shift left
- Fast, multiplication by two
- Shift right
- Fast, division by two
- Bit-wise operations
- AND, OR, NOT, NAND, NOR, XOR, and XNOR
- ROM, PROM, EPROM, EEPROM: Already know these
- SRAM: Fast, low-density, relies on feedback
- DRAM: Fast, high-density, requires refresh, relies on stored charge
- Flash: Already know these - Non-volatile, slow, relies on floating gate
- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, third edition, 2004 - Chapter 9

