
Advanced Digital Logic Design – EECS 303

http://ziyang.eecs.northwestern.edu/eecs303/

Teacher: Robert Dick
Office: L477 Tech
Email: dickrp@northwestern.edu
Phone: 847–467–2298

http://ziyang.eecs.northwestern.edu/eecs303/


Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Outline

1. Combinational testing

2. Sequential testing

2 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Introduction to testing

After fabrication, some circuits don’t work correctly

Determining which circuits contain faults requires testing

Testing some types of circuits is easy, testing others is difficult

One can use automation to help solve this problem

3 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Introduction to testing

Determining the best way to test large circuits requires
automation

Building large circuits that are easy to test also requires
automation

Testing it spans all design, from system to physical level

Today, I’ll introduce some classical ideas at the logic level

4 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Section outline

1. Combinational testing
Yield
Fault models
Combinational test generation

5 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Yield

Yield, y , is the fraction of fault-free products

Test fault coverage, c , is the fraction of faults that the set of
applied tests detects

Low-yield is expensive because fabrication capacity is wasted

Defect level, d , is the fraction of parts containing undetected
faults

d = 1− y1−c

A high defect level is extremely expensive because it means
circuits make their way into products, or worse, to consumers,
before faults are discovered

6 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Defect level

Example acceptable defect level: ∼ 0.0002

Either yield must be very high or fault coverage must be very high

d × 10
-6

 0.5 0.6 0.7 0.8 0.9 1

y

 99
 99.2
 99.4
 99.6
 99.8

 100

c (%)

 0
 100
 200
 300
 400

7 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Section outline

1. Combinational testing
Yield
Fault models
Combinational test generation

8 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Faults and failures

A fault is a physical defect in a circuit

A failure is the deviation of a circuit from its specified behavior

Faults can cause failures but they don’t always cause failures

9 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Functional testing

No assumptions about types of fault

No assumptions about structure or properties of Circuit Under
Test (CUT)

The CUT is a black box that is checked to determine whether it
responds to all (or most) input (sequences) as specified

However, ignoring structural information makes testing
unnecessarily slow

10 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Structural testing

Use information about the specific CUT

Types of faults that are likely to occur
Structure of circuit

11 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

bridging
fault

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

stuck−open
fault

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

stuck−at

fault

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault models

z
b

a

VDD

za

b

VDD

VSS

12 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Singe stuck-at faults

One of the simplest and most common fault models

S-a-0: Stuck-at 0
S-a-1: Stuck-at 1

Relies on digital reinforcement

0.8 · VDD is 1 · VDD one logic stage later
S-a-0.8 ≈ s-a-1

For two-level logic, exhaustive test set for single stuck-at faults
will detect all multiple stuck-at faults, too

Doesn’t hold for multi-level logic

13 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Single stuck-at faults

Consider a NAND3 gate

Inputs fault
z

A B C free
a b c z

0 1 0 1 0 1 0 1

0 0 0 1 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0 1 0 0 1

14 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Single stuck-at faults

Consider a NAND3 gate

Inputs fault
z

A B C free
a b c z

0 1 0 1 0 1 0 1

0 0 0 1 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0 1 0 0 1

Too expensive to use 2n inputs (23 = 8 in this case)

14 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Single stuck-at faults

Consider a NAND3 gate

Inputs fault
z

A B C free
a b c z

0 1 0 1 0 1 0 1

0 0 0 1 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0 1 0 0 1

Unate covering again

14 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault coverage

A test of all possible inputs for a NANDn gate will require 2n

tests

Applying all possible tests (or sequences of tests) for complex
circuits isn’t practical

However, for all NANDn gates, all single stuck-at faults (and
implicitly multiple stuck-at faults) can be tested using only n + 1
tests

15 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault equivalence

The function of the circuit is identical in the presence of either
fault

E.g., any input of a NAND gate being s-a-0 or the output being
s-a-1 → output of 1

In general, identifying equivalent faults, or fault collapsing is
difficult

However, can use knowledge about gates, and connectivities, to
find most equivalent faults

16 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault equivalence

Consider a NAND3 gate

Inputs fault
z

A B C free
a b c z

0 1 0 1 0 1 0 1

0 0 0 1 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0 1 0 0 1

Equivalent faults

17 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Fault equivalence

Consider a NAND3 gate

Inputs fault
z

A B C free
a b c z

0 1 0 1 0 1 0 1

0 0 0 1 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0 1 0 0 1

Equivalent faults

17 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Other fault models

∼ 2/3 CMOS faults are not stuck-at faults

Luckily, stuck-at fault tests often detect them

More advanced faults models

Allow higher theoretical coverage
Are more complicated

In this lecture, we only have time to cover stuck-at-faults

18 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Section outline

1. Combinational testing
Yield
Fault models
Combinational test generation

19 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Test generation

Can use algorithms to automatically generate a test for a specific
fault

Problem: Identify some test, t, such that the output of the
circuit will deviate from its specified value if a particular fault, f ,
is present

Excitation: Need to propagate a value to stuck-at fault that is
contrary to the fault value

Sensitization: Need to propagate the faulty value to an output of
the circuit

20 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Excitation and sensitization

s−a−0

s−a−0

1
1
1

excitation

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

0

21 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Excitation and sensitization

s−a−0

s−a−0

1
1
1

excitation

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

0

21 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Excitation and sensitization

s−a−0s−a−0

1
1
1

excitation

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

0

21 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Excitation and sensitization

s−a−0s−a−0

1
1
1

excitation

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

0

21 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Excitation and sensitization

s−a−0s−a−0

1
1
1

excitation

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

s−a−0

0

1

0

1
1
1

sensitization

0

21 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Backtracking

1
1
1

s−a−0

not sensitized

0

1

0

1

1

1

s−a−0

1
1
1

s−a−0

01

0

sensitized

1
1
1

s−a−0

01

0

sensitized

22 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Backtracking

1
1
1

s−a−0

not sensitized

0

1

0

1

1

1

s−a−0

1
1
1

s−a−0

01

0

sensitized

1
1
1

s−a−0

01

0

sensitized

22 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Backtracking

1
1
1

s−a−0

not sensitized

0

1

0

1

1

1

s−a−0

1
1
1

s−a−0

01

0

sensitized

1
1
1

s−a−0

01

0

sensitized

22 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Backtracking

1
1
1

s−a−0

not sensitized

0

1

0

1

1

1

s−a−0

1
1
1

s−a−0

01

0

sensitized

1
1
1

s−a−0

01

0

sensitized

22 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Automatic Test Pattern Generation (ATPG)

Can automatically determine test for a particular fault

Boolean difference

Generally considered too slow for use on large circuits
Easy to understand

Excitation/sensitization based methods (D-algorithm)

23 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

i1
i2

i3
z

In the presence of the fault, function is i3
XOR faulty and specified functions

24 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

s−a−0i1
i2

i3
z

In the presence of the fault, function is i3

XOR faulty and specified functions

24 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

δ

i1
i2

i3

In the presence of the fault, function is i3

XOR faulty and specified functions

24 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

If the resulting function is 0, the fault can not be identified

If the resulting function is 1, the fault can be identified

Use a test that satisfies (sets to 1) the function

25 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

26 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

26 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

26 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Boolean difference

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

0

1

00 01 11 10

1

1

1

1

00

0 0

0

1

00 01 11 10

1

00

0

0

0

0

0

0

1

00 01 11 10

0 0

00 11

1 0

26 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm

We have seen that, in order to test for a particular fault, we must

Excite the fault
Sensitize a path from the fault to the output

The D-algorithm is an automated method of finding a test that
excites a fault and sensitizes a path to the circuit output

J.P. Roth, IBM, 1966

27 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Roth’s extension to Boolean algebra

α/β

α is the fault-free value
β is the value in the presence of the fault

0/0 = 0

1/1 = 1

1/0 = D
0/1 = D
X/X = X

28 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

(N)AND D-cubes of failure

detection D-cube of failure
gate input z

a b a b z

AND 1 1 s-a-0 1 1 D
0 X s-a-1 0 X D
X 0 s-a-1 X 0 D

NAND 1 1 s-a-1 1 1 D
0 X s-a-0 0 X D
X 0 s-a-0 X 0 D

29 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

(N)OR D-cubes of failure

detection D-cube of failure
gate input z

a b a b z

OR 0 0 s-a-1 0 0 D
1 X s-a-0 1 X D
X 1 s-a-0 X 1 D

NOR 0 0 s-a-0 0 0 D
1 X s-a-1 1 X D
X 1 s-a-1 X 1 D

30 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

(N)AND D-cubes of propagation

input AND NAND
a b z z

1 D D D
1 D D D
D 1 D D
D 1 D D
D D D D
D D D D

31 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

(N)OR D-cubes of propagation

input OR NOR
a b z z

0 D D D
0 D D D
D 0 D D
D 0 D D
D D D D
D D D D

32 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm

1 Initially, all the lines in the circuit are X (Don’t Care)

Left blank in example

2 A gate with an input of D or D and an output of X belongs to
the frontier

3 An element whose assigned inputs do not imply the output is
unjustified

4 We want to drive the frontier to a circuit output (sensitize). . .

5 . . . and justify the gate inputs (excite)

33 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm overview

no

done

yes

choose D-cube
of failure to
excite fault

sensitize path
to output

justify gates

conflicts? Backtrack

34 Robert Dick Advanced Digital Logic Design



D-algorithm

Select a D-cube of failure to excite the fault
while frontier has not yet reached an output do

Perform the implications of the most recent assignment
if the frontier is empty then

Backtrack
end if
Choose a signal, s, s.t. s can’t reached from the fault
Assign s to a value in order to propagate the fault forward

end while
for each unjustified line, l do

if l can be justified then
Justify l

else
Backtrack

end if
end for
A test has been found



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm notes

There are a few details not explained in the pseudocode

Signals should be selected in order to drive the frontier forward

Backtracking is the action of backing up and taking the closest
previously unexplored branch in the decision tree

36 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

s−a−1

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

i1
i2
i3

i4

i5 0/1 = D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

i1
i2
i3

i4

i5

D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

i1
i2
i3

i4

i5

D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

Conflict!

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

1

i1
i2
i3

i4

i5

D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

0

1

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

i1
i2
i3

i4

i5

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

1

0

i1
i2
i3

i4

i5

D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

1

0

i1
i2
i3

i4

i5

D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

1

0

i1
i2
i3

i4

i5

D

z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

1
0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

1
0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

1
0

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

1
0

1

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm example

D

1

0

1

0

1
0

1

i1
i2
i3

i4

i5

D

D
z

37 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

NOR D-cubes of failure

detection D-cube of failure
gate input z

a b a b z

NOR 0 0 s-a-0 0 0 D
0 1 s-a-1 0 1 D
1 0 s-a-1 1 0 D
1 1 s-a-1 1 1 D

38 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

NOR D-cubes of failure

detection D-cube of failure
gate input z

a b a b z

NOR 0 0 s-a-0 0 0 D
0 1 s-a-1 0 1 D
1 0 s-a-1 1 0 D
1 1 s-a-1 1 1 D

38 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

AND D-cubes of propagation

input AND
a b z

1 D D
1 D D
D 1 D
D 1 D
D D D
D D D

39 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

AND D-cubes of propagation

input AND
a b z

1 D D
1 D D
D 1 D
D 1 D
D D D
D D D

39 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

NOR D-cubes of propagation

input NOR
a b z

0 D D
0 D D
D 0 D
D 0 D
D D D
D D D

40 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

NOR D-cubes of propagation

input NOR
a b z

0 D D
0 D D
D 0 D
D 0 D
D D D
D D D

40 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

NOR D-cubes of failure

detection D-cube of failure
gate input z

a b a b z

NOR 0 0 s-a-0 0 0 D
0 1 s-a-1 0 1 D
1 0 s-a-1 1 0 D
1 1 s-a-1 1 1 D

41 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

NOR D-cubes of failure

detection D-cube of failure
gate input z

a b a b z

NOR 0 0 s-a-0 0 0 D
0 1 s-a-1 0 1 D
1 0 s-a-1 1 0 D
1 1 s-a-1 1 1 D

41 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm summary

If a test for a fault exists, guaranteed to generate it

Full backtracking

However, much faster than Boolean difference

42 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Caveats

This lecture has only introduced some topics in testing

If you intend to do research in this area, take a few courses on
testing

Single stuck-at fault model is becoming obsolete

43 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

Caveats

D-algorithm is actually more complicated
Avoiding backtracking is important for performance

Implications
Heuristics to make best decisions first

Should understand derivation of D-cubes for arbitrary fault models

44 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

D-algorithm reference

Stanley Hurst. VLSI Testing: Digital and Mixed Analogue/Digital
Techniques. Institution of Electrical Engineers, U.K., 1998

This is one of the better references in the library

Beware: The D-algorithm examples contain small errors

45 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

Yield
Fault models
Combinational test generation

CAD survey reference

Melvin A. Breuer, Majid Sarrafzadeh, and Fabio Somenzi.
Fundamental CAD algorithms. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, 18(12):1449–1475, December 2000

Recommended by a student

Introduces a number of important logic-level and physical-level
CAD algorithms

A useful supplement to the material in Hachtel and Somenzi’s,
and Sherwani’s books

Introduces the D-algorithm

46 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Outline

1. Combinational testing

2. Sequential testing

47 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Section outline

2. Sequential testing
D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

48 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

D-algorithm review

Given a fault, the D-algorithm will generate a test for that fault

Selects a D-cube of failure to excite the fault

Propagates a D value to the circuit outputs be selection D-cubes
of propagation for gates

Justifies gate inputs

Uses full backtracking on D-cubes of failure and gate justification

49 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Fault simulator

Fault simulation is the process of determining which faults a test
detects

Test generation is complicated and time-consuming

Fault simulation is quick

50 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Test sequence generation

The D-algorithm gives us a way to generate a test for a given fault
However, we need a sequence of tests for all (or most) faults

Determine all stuck-at faults for the circuit
Eliminate equivalent faults
while untested faults remain do

Pick a fault and use an ATPG to generate a test
Append the test to a list
Use a fault simulator to determine all faults the test detects
Eliminate detected faults

end while

51 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Test sequence generation

However, this approach can still be too expensive

Recall

Fault simulation is fast
ATPG is slow

Take advantage of fault simulator

52 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Test sequence generation

while fault coverage is less than 90% do
Generate a random pattern – extremely fast
Use a fault simulator to determine if new faults are detected
if so then

Append pattern to a list
Eliminate detected faults

end if
end while
while fault coverage is less than 99.5% do

Pick a fault and use an ATPG to generate a test
Append the test to a list
Use a fault simulator to determine all faults the test detects
Eliminate detected faults

end while

53 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Section outline

2. Sequential testing
D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

54 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancies

Sometimes a s-at-0 fault can’t be detected

Implication: Given any set of inputs to the circuit, that node can
be set to 0 and the output will match the specifications

Converse for s-a-1 faults

Even if a portion of the circuit is not able the switch, the same
function is realized

The presence of an undetectable fault implies redundancy

How can the D-algorithm can be used to simplify logic?

55 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancies

Sometimes a s-at-0 fault can’t be detected

Implication: Given any set of inputs to the circuit, that node can
be set to 0 and the output will match the specifications

Converse for s-a-1 faults

Even if a portion of the circuit is not able the switch, the same
function is realized

The presence of an undetectable fault implies redundancy

How can the D-algorithm can be used to simplify logic?

55 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancies

Logic terminating in the location of the stuck-at fault can be removed
from the circuit and the same function will be realized

Conventional wisdom suggests removal

Simplify logic
Make circuit more fully testable

56 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

a

b

z

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

s-a-0
a

b

z

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

s-a-0

Excite: a 6= b

a

b

z

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

s-a-0

Excite: a 6= b
Sensitize: a = b = 0

a

b

z

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

s-a-0

Excite: a 6= b
Sensitize: a = b = 0

a

b

z

Can’t excite and propegate faulty value to z!

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

s-a-0

Excite: a 6= b
Sensitize: a = b = 0

Replace s-a-0 logic with 0

0

a

b

z

Can’t excite and propegate faulty value to z!

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

s-a-0

Excite: a 6= b
Sensitize: a = b = 0

Replace s-a-0 logic with 0

Eliminate unused logic

0

a

b

z

Can’t excite and propegate faulty value to z!

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy example

Excite: a 6= b
Sensitize: a = b = 0

Replace s-a-0 logic with 0

Simplify logic

Eliminate unused logic

a

b

z

Can’t excite and propegate faulty value to z!

57 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

ATPG for logic simplification

Can use ATPG algorithm to simplify logic

1 Find a fault that is untestable due to redundancy

2 Remove the redundant logic

3 Repeat

58 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Redundancy removal not always safe

Logical equivalence may not imply true equivalence

What happens if redundancy is intentional?

To reduce power consumption
To ensure signal stability for use in asynchronous circuits

Removal can

Increase power
Introduce races

59 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Section outline

2. Sequential testing
D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

60 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Sequential testing

Can convert to a version of combinational testing

Iterative array expansion

Simulation-based

61 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Iterative array expansion

Make a copy of the combinational logic for each time step

However, now the problem converts ATPG for multiple faults

Iterative array expansion increases the size of the combinational
problem

More importantly, changes the required fault model

Requires ATPG for multiple faults

62 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Iterative array expansion

D Q

QC

i4

i1

i3

i2

z

c

63 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Iterative array expansion

s−a−0

D Q

QC

i4

i1

i3

i2

z

c

63 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Iterative array expansion

1

s−a−0

D Q

QC

i4

i1

i3

i2

z

c

i04

i01

i03

i02

z0

63 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Iterative array expansion

1

s−a−0

s−a−0

D Q

QC

i4

i1

i3

i2

z

c

i14

i11

i13

i12

z1

i04

i01

i03

i02

z0

63 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Iterative array expansion

1

s−a−0

s−a−0

D Q

QC

i4

i1

i3

i2

z

c

i14

i11

i13

i12

z1

i04

i01

i03

i02

z0

63 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Modified D-algorithm for iterative array

Propagate D-frontier forward

Generate new time frames as necessary

Propagate gate justification backward

Generate new time frames as necessary

However, this algorithm is not certain to find a test if one exists

Roth’s algebra not suited to sequential circuits

64 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Muth’s 9-valued logic

D-algorithm can’t adequately model the possible states in
sequential circuits

Repeated effect of fault can’t be modeled

Roth’s values

0/0, 0/1 (D ), 1/0 (D), 1/1, X/X

Muth’s values

0/0, 0/1, 0/X, 1/0, 1/1, 1/X, X/0, X/1, X/X

65 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

Generate a vector

Determine whether that vector brought the circuit state nearer to
or farther from fault excitation and sensitization

If the state moved near to detection, append the pattern to a list

Many of the probabilistic optimization algorithms in the third
lecture can be applied for simulation-based testing

66 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

a
b
c

67 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

s−a−1

a
b
c

67 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

s−a−1

a
b
c

What if a, b, and c are state variables?

67 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

0

1
0

1

0

0

0
0

1

1

s−a−1

000 101

111001

110

a
b
c

What if a, b, and c are state variables?

67 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

0

1
0

1

0

0

0
0

1

1

011?

s−a−1

000 101

111001

110

a
b
c

What if a, b, and c are state variables?

67 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Simulation-based sequential testing

1
0

0

1
0

1

0

0

0
0

1

1

s−a−1

011000 101

111001

110

a
b
c

What if a, b, and c are state variables?

67 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Sequential test generation problems

Sequential test generation intractable for large circuits

Some continue to work on improving test generation

Others modify circuit structure to make test generation easier. . .

68 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Section outline

2. Sequential testing
D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

69 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan-based design for test (DFT)

If testability is considered during design or synthesis, can be
made easy

Instead of forcing ATPG to deal with synchronous testing, insert
a scan chain

Chain together (all) flip-flops and scan through an input if and
only if a testing input is activated

70 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan D flip-flop

C

Q

D
Q

71 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan D flip-flop

T
D

S

71 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan D flip-flop

C

Q

T
D Q

S

71 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan D flip-flop

to next flip−flopfrom previous flip−flop
C

Q

T
D

71 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan D flip-flop

testing logic overhead

to next flip−flopfrom previous flip−flop
C

Q

T
D

71 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan D flip-flop

testing logic overhead

testing routing overhead

to next flip−flop

testing routing overhead

from previous flip−flop
C

Q

T
D

71 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Full scan

Greatly simplifies testing

Converts sequential testing to combinational testing

Testing can be slow if I/O pins limited

Significantly increases chip area and price

More complicated flip-flops
More complicated routing
I/O requirements, especially if speed required

72 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Scan chain

serial scan input

test mode

clock

combinational logic

serial scan outputQ

C

D

T

S

Q

C

D

T

S

Q

C

D

T

S

Q

C

D

T

S

73 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Level-sensitive scan design (LSSD)

Less delay than scan-path during normal operation

Used commercially, especially within IBM

Pre-processing step replaces all latches with LSSD latches

Other companies have related testing approaches

Scan path – NEC
Scan/set – Sperry Univac
Random access scan – Fujitsu

74 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

LSSD

T
Ctest1

Ctest2

D

Cnormal

L1

L1

L2

L2

75 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

LSSD

T
Ctest1

Ctest2

D

Cnormal

L1

L1

L2

L2

level sensitive D flip-flop

75 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

LSSD

T
Ctest1

Ctest2

D

Cnormal

L1

L1

L2

L2

level sensitive D flip-flop

level sensitive D flip-flop

75 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

LSSD

T
Ctest1

Ctest2

D

Cnormal

L1

L1

L2

L2

level sensitive D flip-flop

level sensitive D flip-flop

mode
control

75 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

LSSD

Ctest1

Ctest2

D

Cnormal

L1

L1

L2

level sensitive D flip-flop

level sensitive D flip-flop

mode
control

75 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Full scan disadvantages

Increased area

5%–15%

Increased delay

Depends on critical path average combinational logic depth

Slow when implemented serially

Need to serially clock through every register in IC

High pin requirements to speed up

76 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Partial scan

Instead of scanning all latches, scan a subset

Need to carefully select scanned latches based on

Test coverage effects
Testing speed

77 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Advanced DFT/SFT techniques

Testing core-based systems-on-chip (SoC)

Related to board-level boundary-scan

Fault injection

Reliability evaluation
Insert fault into system and determine reaction

RTL synthesis for testability

Software fault modeling and testing

Extremely difficult problem

78 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Personal observations on testing

Despite continued research on advanced testing techniques,
industry continues to use full-scan

In order for industry to accept a more complicated testing
technique, the advantages must be tremendous
Companies don’t like complexity

Testing is a fairly mature field

Some people in academia have shifted their interest away from
testing

It remains a huge practical problem for industry

79 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Personal observations on testing

Companies don’t want increased complexity

Researchers want to see their ideas used

Therefore, reduction in interest in testing among researchers

Therefore, reduction in interest in testing among companies

However, companies still have huge testing problems

Therefore, high demand for MS and Ph.D. graduates with testing
experience

One option: target a research problems involving testing and another
area, e.g., synthesis

80 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Testing summary

Low defect rate requires high test coverage

Functional testing requires too many patterns

Use structural testing based on a fault model, e.g., single stuck-at

Can use fault equivalence to reduce patterns

Can automatically generate a test for a specific fault

Combine ATPG with fault simulator to generate a set of tests
with high coverage

81 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Testing summary

Can use ATPG for logic simplification – redundancy

Sequential testing difficult for large circuits

Use DFT to make testing easier

Use design automation to make DFT easier

82 Robert Dick Advanced Digital Logic Design



Combinational testing
Sequential testing

D-algorithm review
Redundancy elimination
Sequential testing
Design/synthesis for testability

Sequential testing references

Sujit Dey, Anand Raghunathan, and Rabindra K. Roy.
Considering testability during high-level design. In Proc. Asia &
South Pacific Design Automation Conf., February 1998

Survey on high-level design/synthesis for test techniques

Kwang-Ting Cheng. Gate-level test generation for sequential
circuits. ACM Trans. Design Automation Electronic Systems,
1(4):405–442, October 1996

Survey on sequential test generation

83 Robert Dick Advanced Digital Logic Design


	Combinational testing
	Yield
	Fault models
	Combinational test generation

	Sequential testing
	D-algorithm review
	Redundancy elimination
	Sequential testing
	Design/synthesis for testability


