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5:32 decoder/demultiplexer
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5:32 decoder/demultiplexer implementation details

Why is G1 connected to an inverted active-low enable signal?

Why are 2A, 2B, and 2G not connected on the 74139 part?

What would happen if this design were used and the parts were
TTL (I don’t expect you to know this one already)?

How about CMOS?

5 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Section outline

1. Implementation technologies
Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

6 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Tally circuit example

Given n-input circuit

Count number of 1s in input

I1 Zero One

0 1 0
1 0 1
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Tally circuit example

I1 Zero One

0 1 0
1 0 1

Can implement using logic gates

One

Zero
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I1 Zero One

0 1 0
1 0 1

Can implement using TGs
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4-input tally

I1 I2 Zero One Two
0 0 1 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
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ROMs, FPGAs, and multi-level minimization

Programmable read-only memories (PROMs)

Field-programmable gate arrays (FPGAs)

Programmable devices for prototyping
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Programmable read-only memories (PROMs)

2-D array of binary values

Input: Address

Output: Word
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PROM

Dec

00 n− 1

Address

2 −1
n

00

+5V +5V +5V +5V

Word Line 0011

Word Line 1010

Bit Lines

jj

ii
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Implementing logic with PROMs

F0 = A B C + A B C + A B C

F1 = A B C + A B C + A B C

F2 = A B C + A B C + A B C

F3 = A B C + A B C + A B C
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Truth table

A B C F3 F2 F1 F0

0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 1 1 0 0 1 0

23 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Truth table

A B C F3 F2 F1 F0

0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 1 1 0 0 1 0

Address
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Truth table

A B C F3 F2 F1 F0

0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 1 1 0 0 1 0

Word
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PROM suitable for implementing example

8 words x
4 bits

addresses

outputs
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Memory composition

2764 EPROM

8K x 8

2764
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O7

OE

CS
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A10

A11

A12
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Memory composition
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Memory composition
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PLA/PAL vs. PROM

PLA

Takes advantage of don’t-cares

Good at random logic

Good when product terms shared

PAL

More area-efficient for certain designs

OR-plane can’t be programmed, usually no sharing
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PLA/PAL vs. PROM

PROM

Design trivial

Can’t take advantage of don’t-cares

Area-inefficient

Product/sum terms not shared
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Field-programmable gate arrays (FPGAs)

PLAs

10–100 gate equivalent

FPGAs

Altera
Actel
Xilinx
100–1,000,000 gate equivalent
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Altera EPLDs

Each has from 8–48 macrocells

Macrocell behavior controlled with EPROM bits

Can be used sequentially

Has synchronous and asynchronous modes

31 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Altera erasable programmable logic devices (EPLDs)

Composed of many macrocells – 8 product term AND/OR array with
programmable MUXs

C lk

MUX

Output

MUXQQ

F/B

MUX

Invert

Contro l

AND

ARRAY

pad

Programmab le po larity

I/O P in

Seq. Log ic

B lock

Programmab le feedback
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Multiple array matrix (MAX)

Altera macrocells quite limited

Can’t share product terms between macrocells

Workaround: Connect together macrocells with programmable
interconnect

33 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Multiple array matrix (MAX)

Array

8 Fixed Inputs

52 I/O P ins

8 LABs

16 Macroce lls /LAB

32 Expanders /LAB

EPM5128:

LAB A LAB H

LAB B LAB G

LAB C LAB F

LAB D LAB E

P

I

AA

Log ic

Array

B locks

(s im ilar to

macroce lls )

Globa l Routing :

Programmab le

Interconnect
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MAX expander terms

Macroce ll

ARRAY
I/O

Block

Expander

Product

Term

ARRAY

I

NN

PP

UU

TT

SS

P

I

AA

I/O Pad

I/O Pad

35 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

MAX expander terms

Macroce ll

P− Term s

Expander

P− Term s

Expander product terms shared among all macrocells
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Altera 22V10 PAL
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Altera 22V10 PAL

Many product terms per output

Latches and MUXs associated with outputs

22 IO pins

10 may be used as outputs
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Actel programmable gate arrays

Rows of programmable logic blocks

Rows of interconnect

Columns of interconnect

Attach to rows using antifuses
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Actel programmable gate arrays

Each combinational logic block has 8 inputs, 1 output

No built-in sequential elements

Build flip-flops using logic blocks
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Actel logic block

2:1 MUX

D0

D1

S OA

2:1 MUX

D2

D3

S OB

2:1 MUX

S 0

YY

S 1

Modified 4:1 MUX
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Actel logic block

2:1 MUX

"0"

RR

2:1 MUX

"1"

SS

2:1 MUX QQ

"0"

Cross-couple for sequential use
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Actel programmable gate arrays

IO buffers, programming & test logic

IO buffers, programming & test logic

IO
 b

u
f.

, 
p
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g

. 
&

 t
e
s
t 

lo
g

ic

IO
 b

u
f.

, 
p

ro
g

. 
&
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e
s
t 
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g

ic

Logic modules

Wiring tracks
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Actel interconnect

Log ic Module

Horizontal

Track

Vertical

Track

Anti− fuse

44 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Antifuse routing

Build long routing lines from short segments
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Actel routing example

Log ic Modu le

Log ic Modu le
Log ic Modu le

Output

Input

Input

Minimize number of antifuse hops for critical path

2-3 hops for most interconnections
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Xilinx logic cell arrays (LCAs)

CMOS static RAM

Run-time programmable

Serial shift-register based programming

Program on power-up (external PROM)
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Xilinx LCA components

Configurable logic blocks (CLBs)

IO blocks (IOBs)

Wiring channels
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Xilinx LCAs

IOB IOB IOB IOB

CLB CLB

CLB CLB

IO
B

I
O

B
I
O

B
I
O

B

W iring Channe ls

49 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Xilinx LCA features

Inputs

Input variables

Tri-state (high-Z) enable bit for output

Output clocks
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Xilinx LCA features

Output the input bit

Contains internal flip-flops for inputs and outputs

Fast and slow outputs available, e.g., 5 ns vs. 30 ns

Slower option limits slew rate
Lower noise
Lower power consumption
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Xilinx LCA

DD QQ

OUT

INV

TS

INV

OUTPUT

S OURCE

S LEW

RATE

PAS S IVE

PULLUP

MUX

RR

DDQQ

RR

Vcc

PAD

Output

Buffer

TTL or CMOS

Input Buffer

Globa l ResetClocks

Enable

Output

Out

Direct In

Reg is tered In

Program Contro lled Options

52 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Xilinx CLB

2 flip-flops

General function of 4 variables

2 non-general functions of 5 variables

Certain special-case functions of 6 variables

Global reset

Clock

Clock enable

Independent input, DIN
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Xilinx CLB

Com b inationa l

Func tion

Generator

DD RD

QQ

CE
Mux

DD RD

QQ
CE

Mux

Mux

Mux

Mux

A

B

C

D

EE

Q1

Q2

Res e t

DIN

Clock

Clock

Enab le

FF

GG

XX

YY
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Function generator

Function

of 5

Variables

FF

GG

Mux

Mux

AA

BB

CC

DD

EE

Q1

Q2
Two constrained functions of five variables
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Function generator

Func tion

o f 4

Variab les

FF

Mux

Mux

AA

BB

CC

DD

EE

Q1

Q2

Mux

Func tion

o f 4

Variab les

GG

Mux

Mux

AA

BB

CC

DD

EE

Q1

Q2

Mux

Two arbitrary functions of four variables
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Function generator

Func tion

o f 4

Variab les
EE

Mux

Mux

AA

BB

CC

DD

Q1

Q2

Func tion

o f 4

Variab les

Mux

Mux

AA

BB

CC

DD

Q1

Q2

Mux

FF

GG

Certain limited functions of 6 variables
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

PARITY5 CLB cost example

Determine whether the number of 1s is even or odd

F = A � B � C � D � E

Implement using 1 CLB
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

2-bit comparator CLB cost example

A B = C D or A B > C D

GT = A C + A B D + B C D

EQ = A B C D + A B C D + A B C D + A B C D

Only 1 CLB required
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Majority CLB cost example

High whenever dn/2e outputs are high

CLB

5− input Majority Circuit

CLB

CLB

CLB

7− input Majority Circuit
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Large parity CLB cost example

2 levels allow up to 25 inputs

CLB

CLB

9 Input Parity Log ic
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

4-bit adder CLB cost example

Full adder, 4 CLB delays to final carry out (CO), 4 CLBs

CLB

A0 B0 Cin

S 0

CLB

A1 B1

S 1

CLB

A2 B2

C1S 2

CLB

A3 B3

C2S 3 C0Cout
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

4-bit adder CLB cost example

Composition from 2 2-bit adders give 2 CLB delay, 6 CLB cost

S 0

S 1

C2

A1 B1 CinA0 B0

CLB
S 2

S 3

Cout

A3 B3 A2 B2

CLB
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Xilinx interconnect

Short direct connections

Global long lines

Horizontal/vertical long lines

Switching matrix connections
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Xilinx interconnect

Hierarchical routing organization

Some designs are constrained by routing resources

Can use logic CLBs to control routing

Substantial communication power consumption
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Xilinx interconnect

Interconnect

Direct Connections

Globa l Long Line

Horizonta l/Vertica l

Long Lines

Sw itch ing Matrix

Connections

XX

YY

CLB3

AA

DD

DI

BB
CC

KK

EE RR

CE

XX

YY

CLB1

AA

DD

DI

BB
CC

KK

EE RR

CE
XX

YY

CLB0

AA

DD

DI

BB
CC

KK

EE RR

CE

Direc t

Connec tions

Horizonta l

Long Line

Vertica l

Long Lines
Globa l

Long Line

Switch ing

Matrix

Horizonta l

Long Line

XX

YY

CLB2

AA

DD

DI

BB
CC

KK

EE RR

CE
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Example Xilinx parts

Parameter XC4024 XC3195 XC2018

Number of FFs 2,560 1,320 174
Number of IOs 256 176 74
Number of logic inputs per CLB 9 5 4
Function generators per CLB 3 2 2
Fast carry logic yes no no
Number of logic outputs per CLB 4 2 2
RAM bits 32,768 0 0
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Dynamic reconfiguration

Serial configuration slow

Parallelize

Full reconfiguration slow

Partial reconfiguration

Reconfiguration slow

Use configuration cache
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

FPGA application examples

Prototyping

Constant coefficient multiplication

Direct HW implementation of problem instance, e.g.,

3SAT
Design rule checking (DRC)
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Prototype designs

Discrete packages

Slow
Error-prone

Custom layout requires circuit fabrication

Slow
Expensive for small runs
Can’t be changed

70 Robert Dick Advanced Digital Logic Design
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Programmable devices in prototyping

Multiplexers (MUXs) and demultiplexers (DMUXs)

Wiring them up is tedious and error-prone

Programmable array logic (PAL) and programmable logic array
(PLA)

Fuses blown, write-once

Generic array logic (GAL)

Electrically reprogrammable
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Programmable devices in prototyping

Programmable read-only memories (PROMs)

Inefficient for implementing random logic
Write-once

Erasable programmable read-only memories (EPROMs)

Can be erased
Erasure slow (UV)
Expensive package window
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Programmable devices in prototyping

Electrically erasable programmable read-only memories
(EEPROMs)

Erasure fast
Packaging less expensive
Potential for in-circuit erasure

Field-programmable gate arrays (FPGAs) are ideal

If market size small, ship FPGAs

In-circuit programming practical
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

Section outline

1. Implementation technologies
Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

74 Robert Dick Advanced Digital Logic Design



Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

DeMorgan’s Law for CMOS

(A + B) = A B

(AB) = A + B

A + B = A B

AB = A + B
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Implementation technologies
Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

DeMorgan’s Law for CMOS

OR is the same as NAND with complemented inputs

AND is the same as NOR with complemented inputs

NAND is the same as OR with complemented inputs

NOR is the same as AND with complemented inputs
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

DeMorgan’s Law for OR/NAND

A A B B A + B (A B ) A + B (AB)

0 1 0 1 0 0 1 1
0 1 1 0 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 0 1 1 0 0
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

DeMorgan’s Law for AND/NOR

A A B B A B (A + B ) A B (A + B)

0 1 0 1 0 0 1 1
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0
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Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

AND/OR → NAND/NOR

A

B

C

D
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Homework

Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

AND/OR → NAND/NOR

A

B

C

D

A

B

C

D

AND

AND

OR
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Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

AND/OR → NAND/NOR

A

B

C

D

AND

AND

OR

A

B

C

D

NAND

NAND

NAND
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Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

AND/OR → NAND/NOR

A

B

C

D

NAND

NAND

NAND

A

B

C

D

NAND

NAND

NAND
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Review of MUX composition
Steering logic
ROMs
FPGAs
Transformations for CMOS

AND/OR/NOT network to NAND/NOR

=

=

=

=
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Outline

1. Implementation technologies

2. Homework
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Implementation technologies
Homework

Homework

Review for midterm exam on Thursday

Will post solutions to homework tonight

Responsible for all reading, assignments, labs
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Homework

Review

Two-level transformations and minimization

Multi-level minimization

Design with various implementation technologies
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