Advanced Digital Logic Design – EECS 303

http://ziyang.eecs.northwestern.edu/eecs303/

Teacher:	Robert Dick
Office:	L477 Tech
Email:	dickrp@northwestern.edu
Phone:	847-467-2298

NORTHWESTERN UNIVERSITY

Implementation technologies Homework Homework

Outline

- 1. Implementation technologies
- 2. Homework

Review of MUX composition

Steering logic ROMs FPGAs Transformations for CMOS

Section outline

 Implementation technologies Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition

ROMs FPGAs Transformations for CMOS

5:32 decoder/demultiplexer

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

5:32 decoder/demultiplexer implementation details

- Why is G1 connected to an inverted active-low enable signal?
- Why are 2A, 2B, and 2G not connected on the 74139 part?
- What would happen if this design were used and the parts were TTL (I don't expect you to know this one already)?
- How about CMOS?

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Section outline

 Implementation technologies Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Tally circuit example

- Given *n*-input circuit
- Count number of 1s in input

I_1	Zero	One
0	1	0
1	0	1

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Tally circuit example

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Tally circuit example

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Tally circuit example

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

4-input tally

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

4-input tally

I_1	I_2	Zero	One	Two
0	0	1	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

4-input tally

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Steering logic ROMS FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

TG tally circuit

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Section outline

1. Implementation technologies

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

ROMs, FPGAs, and multi-level minimization

- Programmable read-only memories (PROMs)
- Field-programmable gate arrays (FPGAs)
- Programmable devices for prototyping

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Programmable read-only memories (PROMs)

- 2-D array of binary values
- Input: Address
- Output: Word

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

PROM

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Implementing logic with PROMs

$$F_{0} = \overline{A} \ \overline{B} \ C + A \ \overline{B} \ \overline{C} + A \ \overline{B} \ C$$

$$F_{1} = \overline{A} \ \overline{B} \ C + \overline{A} \ B \ \overline{C} + A \ B \ C$$

$$F_{2} = \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ C + A \ \overline{B} \ \overline{C}$$

$$F_{3} = \overline{A} \ B \ C + A \ \overline{B} \ \overline{C} + A \ \overline{B} \ \overline{C}$$

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Truth table

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Truth table

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Truth table

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

PROM suitable for implementing example

addresses

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

Memory composition

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Memory composition

16K × 16

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Memory composition

 $16K \times 16$

Chip select

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

PLA/PAL vs. PROM

PLA

- Takes advantage of don't-cares
 - Good at random logic
- Good when product terms shared

PAL

- More area-efficient for certain designs
- OR-plane can't be programmed, usually no sharing

Review of MUX composition Steering logic **ROMs** FPGAs Transformations for CMOS

PLA/PAL vs. PROM

PROM

- Design trivial
- Can't take advantage of don't-cares
 - Area-inefficient
- Product/sum terms not shared

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Section outline

1. Implementation technologies

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Field-programmable gate arrays (FPGAs)

- PLAs
 - 10–100 gate equivalent
- FPGAs
 - Altera
 - Actel
 - Xilinx
 - 100–1,000,000 gate equivalent

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Altera EPLDs

- Each has from 8-48 macrocells
- Macrocell behavior controlled with EPROM bits
- Can be used sequentially
- Has synchronous and asynchronous modes

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Altera erasable programmable logic devices (EPLDs)

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Multiple array matrix (MAX)

- Altera macrocells quite limited
 - · Can't share product terms between macrocells
- Workaround: Connect together macrocells with programmable interconnect

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Multiple array matrix (MAX)

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

MAX expander terms

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

MAX expander terms

Expander product terms shared among all macrocells

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Altera 22V10 PAL

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Altera 22V10 PAL

- Many product terms per output
- Latches and MUXs associated with outputs
- 22 IO pins
- 10 may be used as outputs

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel programmable gate arrays

- Rows of programmable logic blocks
- Rows of interconnect
- Columns of interconnect
- Attach to rows using antifuses

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel programmable gate arrays

- Each combinational logic block has 8 inputs, 1 output
- No built-in sequential elements
- Build flip-flops using logic blocks

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel logic block

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel logic block

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel programmable gate arrays

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel interconnect

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Antifuse routing

Build long routing lines from short segments

Robert Dick Advanced Digital Logic Design

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Actel routing example

- Minimize number of antifuse hops for critical path
- 2-3 hops for most interconnections

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx logic cell arrays (LCAs)

- CMOS static RAM
 - Run-time programmable
- Serial shift-register based programming
- Program on power-up (external PROM)

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx LCA components

- Configurable logic blocks (CLBs)
- IO blocks (IOBs)
- Wiring channels

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Xilinx LCAs

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx LCA features

Inputs

- Input variables
- Tri-state (high-Z) enable bit for output
- Output clocks

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx LCA features

- Output the input bit
- Contains internal flip-flops for inputs and outputs
- Fast and slow outputs available, e.g., 5 ns vs. 30 ns
 - Slower option limits slew rate
 - Lower noise
 - Lower power consumption

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx LCA

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx CLB

- 2 flip-flops
- General function of 4 variables
- 2 non-general functions of 5 variables
- Certain special-case functions of 6 variables
- Global reset
- Clock
- Clock enable
- Independent input, DIN

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx CLB

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Function generator

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Function generator

Two arbitrary functions of four variables

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Function generator

Certain limited functions of 6 variables

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

PARITY5 CLB cost example

- Determine whether the number of 1s is even or odd
- $F = A \oplus B \oplus C \oplus D \oplus E$
- Implement using 1 CLB

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

2-bit comparator CLB cost example

A B = C D or A B > C D $GT = A \overline{C} + A B \overline{D} + B \overline{C} \overline{D}$ $EQ = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} B \overline{C} D + A \overline{B} C \overline{D} + A B C D$ Only 1 CLB required

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Majority CLB cost example

High whenever $\lceil n/2 \rceil$ outputs are high

5-input Majority Circuit

7-input Majority Circuit

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Large parity CLB cost example

2 levels allow up to 25 inputs

9 Input Parity Logic

Robert Dick Advanced Digital Logic Design

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

4-bit adder CLB cost example

Full adder, 4 CLB delays to final carry out (CO), 4 CLBs

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

4-bit adder CLB cost example

Composition from 2 2-bit adders give 2 CLB delay, 6 CLB cost

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Xilinx interconnect

- Short direct connections
- Global long lines
- Horizontal/vertical long lines
- Switching matrix connections

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx interconnect

- Hierarchical routing organization
- Some designs are constrained by routing resources
- Can use logic CLBs to control routing
- Substantial communication power consumption

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Xilinx interconnect

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Example Xilinx parts

Parameter	XC4024	XC3195	XC2018
Number of FFs	2,560	1,320	174
Number of IOs	256	176	74
Number of logic inputs per CLB	9	5	4
Function generators per CLB	3	2	2
Fast carry logic	yes	no	no
Number of logic outputs per CLB	4	2	2
RAM bits	32,768	0	0

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Dynamic reconfiguration

- Serial configuration slow
 - Parallelize
- Full reconfiguration slow
 - Partial reconfiguration
- Reconfiguration slow
 - Use configuration cache

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

FPGA application examples

- Prototyping
- Constant coefficient multiplication
- Direct HW implementation of problem instance, e.g.,
 - 3SAT
 - Design rule checking (DRC)

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Prototype designs

- Discrete packages
 - Slow
 - Error-prone
- Custom layout requires circuit fabrication
 - Slow
 - Expensive for small runs
 - Can't be changed

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Programmable devices in prototyping

- Multiplexers (MUXs) and demultiplexers (DMUXs)
 - Wiring them up is tedious and error-prone
- Programmable array logic (PAL) and programmable logic array (PLA)
 - Fuses blown, write-once
- Generic array logic (GAL)
 - Electrically reprogrammable

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Programmable devices in prototyping

- Programmable read-only memories (PROMs)
 - Inefficient for implementing random logic
 - Write-once
- Erasable programmable read-only memories (EPROMs)
 - Can be erased
 - Erasure slow (UV)
 - Expensive package window

Review of MUX composition Steering logic ROMs **FPGAs** Transformations for CMOS

Programmable devices in prototyping

- Electrically erasable programmable read-only memories (EEPROMs)
 - Erasure fast
 - Packaging less expensive
 - Potential for in-circuit erasure
- Field-programmable gate arrays (FPGAs) are ideal
 - If market size small, ship FPGAs
- In-circuit programming practical

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Section outline

1. Implementation technologies

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

DeMorgan's Law for CMOS

$$\overline{(A+B)} = \overline{A} \ \overline{B}$$
$$\overline{(AB)} = \overline{A} + \overline{B}$$
$$A+B = \overline{\overline{A}} \ \overline{\overline{B}}$$
$$AB = \overline{\overline{A} + \overline{B}}$$

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

DeMorgan's Law for CMOS

- OR is the same as NAND with complemented inputs
- AND is the same as NOR with complemented inputs
- NAND is the same as OR with complemented inputs
- NOR is the same as AND with complemented inputs

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

DeMorgan's Law for OR/NAND

А	\overline{A}	В	\overline{B}	A + B	$\overline{(\overline{A} \ \overline{B})}$	$\overline{A} + \overline{B}$	$\overline{(AB)}$
0	1	0	1	0	0	1	1
0	1	1	0	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	0	1	1	0	0

Robert Dick Advanced Digital Logic Design
Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

DeMorgan's Law for AND/NOR

А	\overline{A}	В	\overline{B}	ΑB	$\overline{(\overline{A}+\overline{B})}$	$\overline{A} \overline{B}$	$\overline{(A+B)}$
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0

Robert Dick Advanced Digital Logic Design

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

$AND/OR \rightarrow \overline{NAND/NOR}$

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

$AND/OR \rightarrow NAND/NOR$

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

$AND/OR \rightarrow NAND/NOR$

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

$AND/OR \rightarrow NAND/NOR$

Review of MUX composition Steering logic ROMs FPGAs Transformations for CMOS

AND/OR/NOT network to NAND/NOR

- 1. Implementation technologies
- 2. Homework

Homework

Review for midterm exam on Thursday

Will post solutions to homework tonight

Responsible for all reading, assignments, labs

- Two-level transformations and minimization
- Multi-level minimization
- Design with various implementation technologies