## Advanced Digital Logic Design – EECS 303

http://ziyang.eecs.northwestern.edu/eecs303/

Teacher:Robert DickOffice:L477 TechEmail:dickrp@northwestern.eduPhone:847-467-2298



NORTHWESTERN UNIVERSITY

#### Misc.

Two-level logic Computational complexity Espresso Homework

# Outline

- 1. Misc.
- 2. Two-level logic
- 3. Computational complexity
- 4. Espresso
- 5. Homework

## Unix privacy hint

|        | chmod -R go-rwx ~ |        |         |  |  |
|--------|-------------------|--------|---------|--|--|
| Letter | Meaning           | Letter | Meaning |  |  |
| u      | user              | r      | read    |  |  |
| g      | group             | w      | write   |  |  |
| 0      | other             | х      | execute |  |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

# Outline

- 1. Misc.
- 2. Two-level logic
- 3. Computational complexity
- 4. Espresso
- 5. Homework

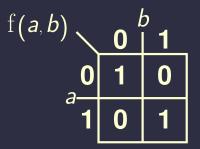
**Two-level logic properties** Two-level minimization The Quine–McCluskey algorithm

# Section outline

2. Two-level logic Two-level logic properties Two-level minimization The Quine-McCluskey algorithm

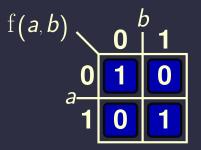
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is necessary



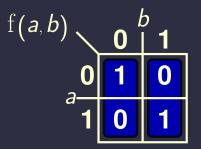
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is necessary



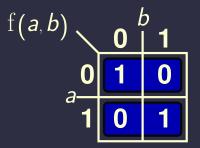
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is necessary



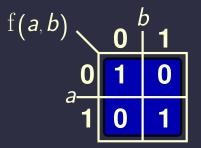
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is necessary



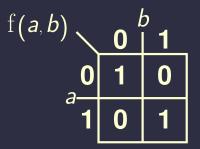
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is necessary



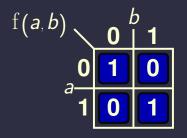
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is necessary



**Two-level logic properties** Two-level minimization The Quine–McCluskey algorithm

#### Two-level logic is sufficient



- All Boolean functions can be represented with two logic levels
- Given k variables,  $2^{K}$  minterm functions exist
- Select arbitrary union of minterms

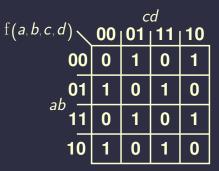
**Two-level logic properties** Two-level minimization The Quine–McCluskey algorithm

#### Two-level well-understood

- As we will see later, optimal minimization techniques known for two-level
- · However, optimal two-level solution may not be optimal solution
  - Sometimes a suboptimal solution to the right problem is better than the optimal solution to the wrong problem

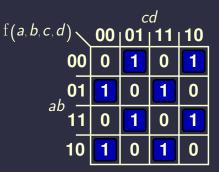
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level sometimes impractical



Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Two-level sometimes impractical



Consider a 4-term XOR (parity) gate:  $a \oplus b \oplus c \oplus d$  $(\overline{a} \ \overline{b} \ \overline{c} d) + (\overline{a} \ \overline{b} \ c \ \overline{d}) + (\overline{a} \ b \ \overline{c} \ \overline{d}) + (\overline{a} \ b \ c \ d) + (a \ b \ \overline{c} \ d) + (a \ \overline{b} \ \overline{c} \ d) + (a \ \overline{c} \ \overline{c} \ d) + (a \ \overline{c} \ \overline{c} \ d) + (a \ \overline{c} \ \overline{c$ 

**Two-level logic properties** Two-level minimization The Quine–McCluskey algorithm

## Two-level weakness

- Two-level representation is exponential
- However, it's a simple concept
  - Is  $\sum_{i=1}^{n} x_i$  odd?
- Problem with representation, not function

**Two-level logic properties** Two-level minimization The Quine–McCluskey algorithn

#### Two-level weakness

Two-level representations also have other weaknesses

- Conversion from SOP to POS is difficult
  - Inverting functions is difficult
  - --ing two SOPs or +-ing two POSs is difficult
- Neither general POS or SOP are canonical
  - Equivalence checking difficult
- POS satisfiability  $\in \mathcal{NP}$ -complete

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Logic minimization motivation

- Want to reduce area, power consumption, delay of circuits
- Hard to exactly predict circuit area from equations
- Can approximate area with SOP cubes
- Minimize number of cubes and literals in each cube
- Algebraic simplification difficult
  - Hard to guarantee optimality

**Two-level logic properties** Two-level minimization The Quine–McCluskey algorithm

## Logic minimization motivation

- K-maps work well for small problems
  - Too error-prone for large problems
  - Don't ensure optimal prime implicant selection
- Quine-McCluskey optimal and can be run by a computer
  - Too slow on large problems
- Espresso heuristic usually gets good results fast on large problems

Two-level logic properties **Two-level minimization** The Quine–McCluskey algorithm

# Section outline

 Two-level logic Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

Two-level logic properties **Two-level minimization** The Quine–McCluskey algorithm

Review: Algebraic simplification

Prove  $XY + X\overline{Y} = X$ 

 $egin{aligned} XY + X\overline{Y} &= X(\overline{Y} + \overline{Y}) \ X(Y + \overline{Y}) &= X(1) \ X(1) &= X \end{aligned}$ 

distributive law complementary law identity law

Two-level logic properties **Two-level minimization** The Quine–McCluskey algorithm

# Boolean function minimization

- Algebraic simplification
  - Not systematic
  - · How do you know when optimal solution has been reached?
- Optimal algorithm, e.g., Quine-McCluskey
  - Only fast enough for small problems
  - Understanding these is foundation for understanding more advanced methods
- Not necessarily optimal heuristics
  - Fast enough to handle large problems

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Section outline

#### 2. Two-level logic

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

Quine-McCluskey two-level logic minimization

- Compute prime implicants with a well-defined algorithm
  - Start from minterms
  - Merge adjacent implicants until further merging impossible
- Select minimal cover from prime implicants
  - Unate covering problem

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | _ |
|--------------|----------------------|---|
| $\Sigma = 1$ | 0001<br>0010<br>1000 | _ |
| $\Sigma = 2$ | 1001<br>1010         |   |
| $\Sigma = 3$ | 1101<br>1110         |   |
| $\Sigma = 4$ | 1111                 |   |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X |
|--------------|----------------------|------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 |      |
| $\Sigma = 2$ | 1001<br>1010         |      |
| $\Sigma = 3$ | 1101<br>1110         |      |
| $\Sigma = 4$ | 1111                 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X |
|--------------|----------------------|------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 |      |
| $\Sigma = 2$ | 1001<br>1010         |      |
| $\Sigma = 3$ | 1101<br>1110         |      |
| $\Sigma = 4$ | 1111                 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X<br>00X0 |
|--------------|----------------------|--------------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 |              |
| $\Sigma = 2$ | 1001<br>1010         |              |
| $\Sigma = 3$ | 1101<br>1110         |              |
| $\Sigma = 4$ | 1111                 |              |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X<br>00X0 |
|--------------|----------------------|--------------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 |              |
| $\Sigma = 2$ | 1001<br>1010         |              |
| $\Sigma = 3$ | 1101<br>1110         |              |
| $\Sigma = 4$ | 1111                 |              |

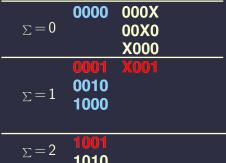
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X<br>00X0<br>X000 |
|--------------|----------------------|----------------------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 |                      |
| $\Sigma = 2$ | 1001<br>1010         |                      |
| $\Sigma = 3$ | 1101<br>1110         |                      |
| $\Sigma = 4$ | 1111                 |                      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X<br>00X0<br>X000 |
|--------------|----------------------|----------------------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 |                      |
| $\Sigma = 2$ | 1001<br>1010         |                      |
| $\Sigma = 3$ | 1101<br>1110         |                      |
| $\Sigma = 4$ | 1111                 |                      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



| <u> </u>     | 1010 |  |
|--------------|------|--|
| $\Sigma = 3$ | 1101 |  |
|              | 1110 |  |
| $\Sigma = 4$ | 1111 |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X<br>00X0<br>X000 |
|--------------|----------------------|----------------------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 | X001                 |
| $\Sigma = 2$ | <b>1001</b><br>1010  |                      |
| $\Sigma = 3$ | 1101<br>1110         |                      |
| $\Sigma = 4$ | 1111                 |                      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

# Computing prime implicants

∠

|              | 0000 | 000X |
|--------------|------|------|
| $\Sigma = 0$ |      | 00X0 |
|              |      | X000 |
|              | 0001 | X001 |
| $\Sigma = 1$ | 0010 | X010 |
| $\Sigma - 1$ | 1000 |      |
|              |      |      |
| $\Sigma = 2$ | 1001 |      |
| 2 - 2        | 1010 |      |
| $\Sigma = 3$ | 1101 |      |
|              | 1110 |      |
| $\nabla = 4$ | 1111 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000 | 000X<br>00X0<br>X000 |
|--------------|------|----------------------|
| $\Sigma = 1$ |      | X001<br>X010         |

| $\Sigma = 2$ | 1001 |  |
|--------------|------|--|
|              | 1010 |  |
| $\Sigma = 3$ | 1101 |  |
|              | 1110 |  |
| $\Sigma = 4$ | 1111 |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X |  |
|--------------|------|------|--|
| $\Sigma = 0$ |      | 00X0 |  |
|              |      | X000 |  |
|              | 0001 | X001 |  |
| $\Sigma = 1$ |      | X010 |  |
| <u> </u>     | 1000 | 100X |  |

| $\Sigma = 2$ | 1001 |
|--------------|------|
|              | 1010 |
| $\Sigma = 3$ | 1101 |
|              | 1110 |
| $\Sigma = 4$ | 1111 |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X |
|--------------|------|------|
| $\Sigma = 0$ |      | 00X0 |
|              |      | X000 |
|              | 0001 | X001 |
| $\Sigma = 1$ | 0010 | X010 |
| $\sum -1$    | 1000 | 100X |
|              |      |      |

| $\Sigma = 2$ | 1001 |  |
|--------------|------|--|
| <u> </u>     | 1010 |  |
| $\Sigma = 3$ | 1101 |  |
|              | 1110 |  |
| $\Sigma = 4$ | 1111 |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|                                  | 0000 | 000X |
|----------------------------------|------|------|
| $\Sigma = 0$                     |      | 00X0 |
|                                  |      | X000 |
|                                  | 0001 | X001 |
| $\Sigma = 1$                     | 0010 | X010 |
| $\Sigma - 1$                     | 1000 | 100X |
|                                  |      | 10X0 |
| $\Sigma = 2$                     | 1001 |      |
| <u>&gt;</u> – Z                  | 1010 |      |
| $\Sigma = 3$                     | 1101 |      |
| $\overline{\Sigma} = \mathbf{J}$ | 1110 |      |
| $\Sigma = 4$                     | 1111 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|                                              | 0000 | 000X |  |
|----------------------------------------------|------|------|--|
| $\Sigma = 0$                                 |      | 00X0 |  |
|                                              |      | X000 |  |
|                                              | 0001 | X001 |  |
| <u>⊳                                    </u> | 0010 | X010 |  |
| $\Sigma = 1$                                 | 1000 | 100X |  |
|                                              |      | 10X0 |  |
|                                              | 1001 |      |  |
| $\Sigma = 2$                                 | 1010 |      |  |
| $\Sigma = 3$                                 | 1101 |      |  |
| <u> </u>                                     | 1110 |      |  |
| $\nabla = 4$                                 | 1111 |      |  |
| $\sum -4$                                    |      |      |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X |
|--------------|------|------|
| $\Sigma = 0$ |      | 00X0 |
|              |      | X000 |
|              | 0001 | X001 |
| $\Sigma = 1$ | 0010 | X010 |
| <u> </u>     | 1000 | 100X |
|              |      | 10X0 |
| $\Sigma = 2$ | 1001 | 1X01 |
| 2-2          | 1010 |      |
| $\Sigma = 3$ | 1101 |      |
|              | 1110 |      |
| $\Sigma = 4$ | 1111 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X |  |
|--------------|------|------|--|
| $\Sigma = 0$ |      | 00X0 |  |
|              |      | X000 |  |
|              | 0001 | X001 |  |
| $\Sigma = 1$ | 0010 | X010 |  |
| $\Sigma - 1$ | 1000 | 100X |  |
|              |      | 10X0 |  |
| $\Sigma = 2$ | 1001 | 1X01 |  |
| <u> </u>     | 1010 | 1X10 |  |
| $\Sigma = 3$ | 1101 |      |  |
|              | 1110 |      |  |
| $\Sigma = 4$ | 1111 |      |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| -                                            |      |      |  |
|----------------------------------------------|------|------|--|
|                                              | 0000 | 000X |  |
| $\Sigma = 0$                                 |      | 00X0 |  |
|                                              |      | X000 |  |
|                                              | 0001 | X001 |  |
| <u>∽                                    </u> | 0010 | X010 |  |
| $\Sigma = 1$                                 | 1000 | 100X |  |
|                                              |      | 10X0 |  |
| $\Sigma = 2$                                 | 1001 | 1X01 |  |
| <u> </u>                                     | 1010 | 1X10 |  |
| $\Sigma = 3$                                 | 1101 |      |  |
| $\overline{2} - 3$                           | 1110 |      |  |
| $\Sigma = 4$                                 | 1111 |      |  |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X |
|--------------|------|------|
| $\Sigma = 0$ |      | 00X0 |
|              |      | X000 |
|              | 0001 | X001 |
| $\Sigma = 1$ | 0010 | X010 |
| 2 — 1        | 1000 | 100X |
|              |      | 10X0 |
| $\Sigma = 2$ | 1001 | 1X01 |
| <b>2 — 2</b> | 1010 | 1X10 |
| $\Sigma = 3$ | 1101 | 111X |
|              | 1110 |      |
| $\Sigma = 4$ | 1111 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X |
|--------------|------|------|
| $\Sigma = 0$ |      | 00X0 |
|              |      | X000 |
|              | 0001 | X001 |
| $\Sigma = 1$ | 0010 | X010 |
| <u> </u>     | 1000 | 100X |
|              |      | 10X0 |
| $\Sigma = 2$ | 1001 | 1X01 |
| <b>Z — Z</b> | 1010 | 1X10 |
| $\Sigma = 3$ | 1101 | 111X |
|              | 1110 | 11X1 |
| $\Sigma = 4$ | 1111 |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X | _ |
|--------------|------|------|---|
| $\Sigma = 0$ |      | 00X0 |   |
|              |      | X000 |   |
|              | 0001 | X001 |   |
| - 1          | 0010 | X010 |   |
| $\Sigma = 1$ | 1000 | 100X |   |
|              |      | 10X0 |   |
| $\Sigma = 2$ | 1001 | 1X01 |   |
| <u> </u>     | 1010 | 1X10 |   |
| $\Sigma = 3$ | 1101 | 111X |   |
|              | 1110 | 11X1 |   |
| $\Sigma = 4$ | 1111 |      |   |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|                                  | 0000 | 000X | X00X |
|----------------------------------|------|------|------|
| $\Sigma = 0$                     |      | 00X0 |      |
|                                  |      | X000 |      |
|                                  | 0001 | X001 |      |
| <u>∽</u> – 1                     | 0010 | X010 |      |
| $\Sigma = 1$                     | 1000 | 100X |      |
|                                  |      | 10X0 |      |
| $\Sigma = 2$                     | 1001 | 1X01 |      |
| <u>&gt;</u> – Z                  | 1010 | 1X10 |      |
| $\Sigma = 3$                     | 1101 | 111X |      |
| $\overline{\Sigma} = \mathbf{J}$ | 1110 | 11X1 |      |
| $\Sigma = 4$                     | 1111 |      |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X | X00X |
|--------------|------|------|------|
| $\Sigma = 0$ |      | 00X0 |      |
|              |      | X000 |      |
|              | 0001 | X001 |      |
| $\Sigma = 1$ | 0010 | X010 |      |
| $\Sigma - 1$ | 1000 | 100X |      |
|              |      | 10X0 |      |
| $\Sigma = 2$ | 1001 | 1X01 |      |
| <u> </u>     | 1010 | 1X10 |      |
| $\Sigma = 3$ | 1101 | 111X |      |
|              | 1110 | 11X1 |      |
| $\Sigma = 4$ | 1111 |      |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X        | X00X        |
|--------------|------|-------------|-------------|
| $\Sigma = 0$ |      | <b>00X0</b> | <b>X0X0</b> |
|              |      | X000        |             |
|              | 0001 | X001        |             |
| $\Sigma = 1$ | 0010 | X010        |             |
| $\sum -1$    | 1000 | 100X        |             |
|              |      | 10X0        |             |
| $\Sigma = 2$ | 1001 | 1X01        |             |
| <u> </u>     | 1010 | 1X10        |             |
| $\Sigma = 3$ | 1101 | 111X        |             |
| $\Sigma - 3$ | 1110 | 11X1        |             |
| $\Sigma = 4$ | 1111 |             |             |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X | X00X |
|--------------|------|------|------|
| $\Sigma = 0$ |      | 00X0 | X0X0 |
|              |      | X000 |      |
|              | 0001 | X001 |      |
| $\Sigma = 1$ | 0010 | X010 |      |
| $\Sigma - 1$ | 1000 | 100X |      |
|              |      | 10X0 |      |
| $\Sigma = 2$ | 1001 | 1X01 |      |
| <u></u>      | 1010 | 1X10 |      |
| $\Sigma = 3$ | 1101 | 111X |      |
|              | 1110 | 11X1 |      |
| $\Sigma = 4$ | 1111 |      |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000                 | 000X<br>00X0<br>X000         | X00X<br>X0X0 |
|--------------|----------------------|------------------------------|--------------|
| $\Sigma = 1$ | 0001<br>0010<br>1000 | X001<br>X010<br>100X<br>10X0 |              |
| $\Sigma = 2$ | 1001<br>1010         | 1X01<br>1X10                 |              |
| $\Sigma = 3$ | 1101<br>1110         | 111X<br>11X1                 |              |
| $\Sigma = 4$ | 1111                 |                              |              |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X | X00X |
|--------------|------|------|------|
| $\Sigma = 0$ |      | 00X0 | X0X0 |
|              |      | X000 |      |
|              | 0001 | X001 |      |
| $\Sigma = 1$ | 0010 | X010 |      |
| $\Sigma - 1$ | 1000 | 100X |      |
|              |      | 10X0 |      |
| $\Sigma = 2$ | 1001 | 1X01 |      |
| <u> </u>     | 1010 | 1X10 |      |
| $\Sigma = 3$ | 1101 | 111X |      |
|              | 1110 | 11X1 |      |
| $\Sigma = 4$ | 1111 |      |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

| $\Sigma = 0$ | 0000         | 000X<br>00X0              | X00X<br>X0X0 |
|--------------|--------------|---------------------------|--------------|
|              | 0001         | X000<br>X001              |              |
| $\Sigma = 1$ | 0010<br>1000 | <mark>X010</mark><br>100X |              |
|              |              | 10X0                      |              |
| $\Sigma = 2$ | 1001<br>1010 | 1X01<br>1X10              |              |
| $\Sigma = 3$ | 1101<br>1110 | 111X<br>11X1              |              |
| $\Sigma = 4$ | 1111         |                           |              |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

|              | 0000 | 000X | X00X |
|--------------|------|------|------|
| $\Sigma = 0$ |      | 00X0 | X0X0 |
|              |      | X000 |      |
|              | 0001 | X001 |      |
| $\Sigma = 1$ | 0010 | X010 |      |
| $\Sigma - 1$ | 1000 | 100X |      |
|              |      | 10X0 |      |
| $\Sigma = 2$ | 1001 | 1X01 |      |
| <u></u>      | 1010 | 1X10 |      |
| $\Sigma = 3$ | 1101 | 111X |      |
|              | 1110 | 11X1 |      |
| $\Sigma = 4$ | 1111 |      |      |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

### Definition: Unate covering

Given a matrix for which all entries are 0 or 1, find the minimum cardinality subset of columns such that, for every row, at least one column in the subset contains a 1.

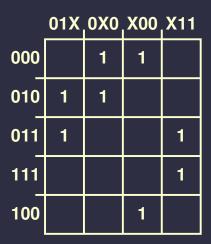
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

### Definition: Unate covering

Given a matrix for which all entries are 0 or 1, find the minimum cardinality subset of columns such that, for every row, at least one column in the subset contains a 1.

I'll give an example

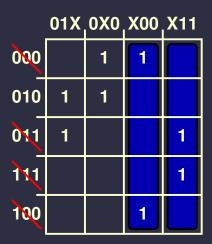
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



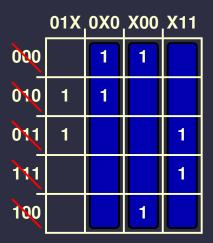
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



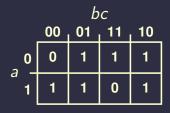
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



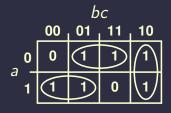
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



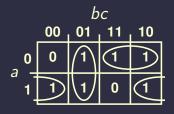
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



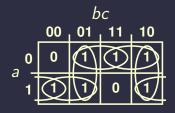
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



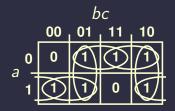
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

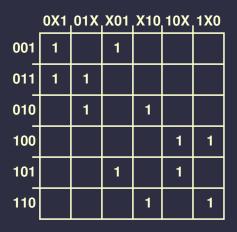


Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

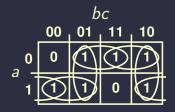


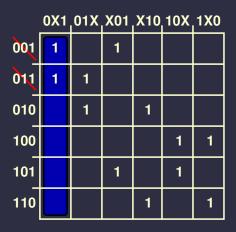
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



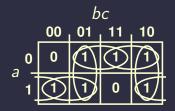


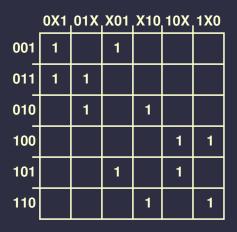
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



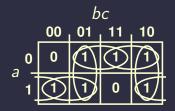


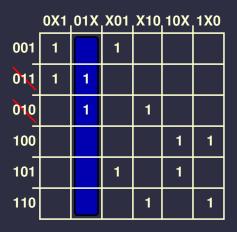
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



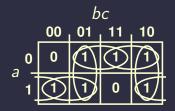


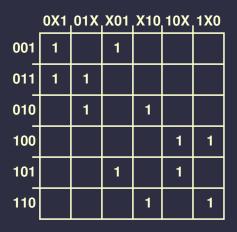
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm





Two-level logic properties Two-level minimization The Quine–McCluskey algorithm





Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

### Implicant selection reduction

- Eliminate rows covered by essential columns
- Eliminate rows dominated by other rows
- Eliminate columns dominated by other columns

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

### Eliminate rows covered by essential columns

|   | Α | В | С |
|---|---|---|---|
| Η |   | 1 |   |
| I | 1 |   | 1 |
| J | 1 | 1 |   |
| K |   | 1 | 1 |

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Eliminate rows covered by essential columns



Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

# Eliminate rows covered by essential columns



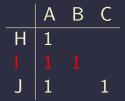
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

# Eliminate rows covered by essential columns



Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Eliminate rows dominating other rows



Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Eliminate rows dominating other rows

 A
 B
 C

 H
 1

 I
 1

 J
 1

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Eliminate rows dominating other rows

A B C H 1 I 1 1 J 1 1

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Eliminate columns dominated by other columns



Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Eliminate columns dominated by other columns

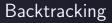


Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

### Eliminate columns dominated by other columns

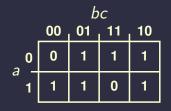
|   | A | В |  |
|---|---|---|--|
| Н | 1 |   |  |
| 1 | 1 | 1 |  |
| J | 1 |   |  |
| K |   | 1 |  |

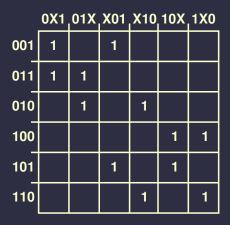
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



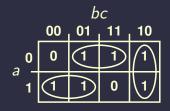
- Will proceed to complete solution unless cyclic
- If cyclic, can bound cover size
  - Compute independent sets

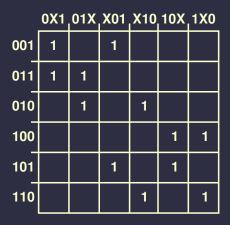
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm



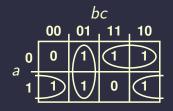


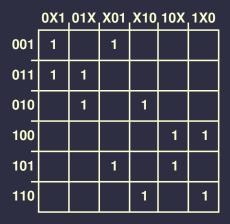
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm





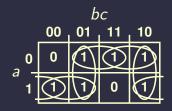
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

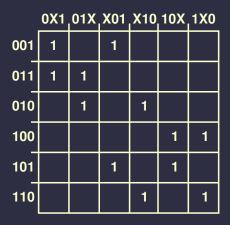




Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

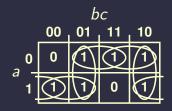
#### Find lower bound





Robert Dick Advanced Digital Logic Design

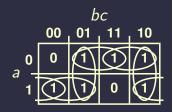
Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

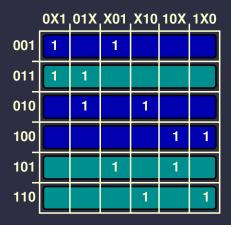




Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Find lower bound



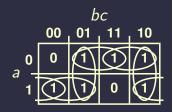


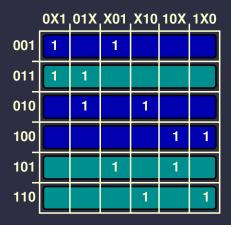
#### 3 disjoint rows $\rightarrow$ 3 columns required

Robert Dick

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

## Find lower bound





#### 3 disjoint rows $\rightarrow$ 3 columns required

Robert Dick

Two-level logic properties Two-level minimization The Quine–McCluskey algorithm

#### Use bound to constrain search space

- Eliminate rows covered by essential columns
- Eliminate rows dominated by other rows
- Eliminate columns dominated by other columns
- Branch-and-bound on cyclic problems
  - Use independent sets to bound
- Speed improved, still  $\in \mathcal{NP}\text{-complete}$

Introduction Solving hard problems

# Outline

- 1. Misc.
- 2. Two-level logic
- 3. Computational complexity
- 4. Espresso
- 5. Homework

Introduction Solving hard problems

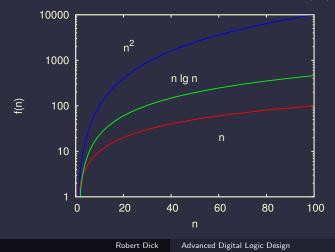
## Section outline

3. Computational complexity Introduction Solving hard problems

Introduction Solving hard problems

# Extremely brief introduction to $\mathcal{NP}$ -completeness

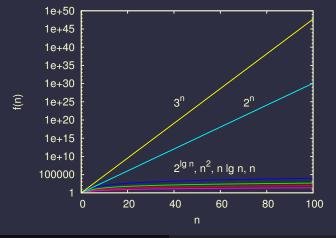
Polynomial-time algorithms:  $\mathcal{O}(n)$ ,  $\mathcal{O}(n \lg n)$ ,  $\mathcal{O}(n^2)$ 



Introduction Solving hard problems

# Extremely brief introduction to $\mathcal{NP}$ -completeness

There also exist exponential-time algorithms:  $\mathcal{O}(2^{\lg n})$ ,  $\mathcal{O}(2^n)$ ,  $\mathcal{O}(3^n)$ 



Robert Dick Advanced Digital Logic Design

Introduction Solving hard problems

# Extremely brief introduction to $\mathcal{NP}$ -completeness

- Any NP-complete problem instance can be converted to any other NP-complete problem instance in polynomial time (quickly)
- Nobody has ever developed a polynomial time (fast) algorithm that optimally solves an  $\mathcal{NP}\text{-}\text{complete problem}$
- It is generally believed (but not proven) that it is not possible to devise a polynomial time (fast) algorithm that optimally solves an  $\mathcal{NP}$ -complete problem
- Can use heuristics

Introduction Solving hard problems

# Extremely brief introduction to $\mathcal{NP}$ -completeness

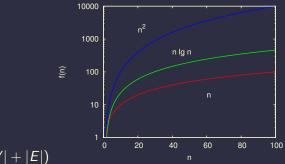
- Any NP-complete problem instance can be converted to any other NP-complete problem instance in polynomial time (quickly)
- Nobody has ever developed a polynomial time (fast) algorithm that optimally solves an  $\mathcal{NP}\text{-}\text{complete problem}$
- It is generally believed (but not proven) that it is not possible to devise a polynomial time (fast) algorithm that optimally solves an  $\mathcal{NP}$ -complete problem
- Can use heuristics
  - Fast algorithms that often produce good solutions

Computational complexity

Introduction

#### $\mathcal{NP}$ -completeness

Recall that sorting may be done in  $\mathcal{O}(n \lg n)$  time DFS  $\in \mathcal{O}(|V| + |E|)$ , BFS  $\in \mathcal{O}(|V|)$ , Topological sort  $\in$ 

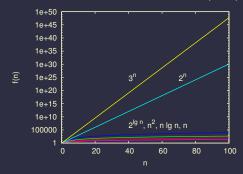


 $\mathcal{O}\left(|V|+|E|\right)$ 

Introduction Solving hard problems

## $\mathcal{NP}$ -completeness

There also exist exponential-time algorithms:  $\mathcal{O}(2^{\lg n}), \mathcal{O}(2^n), \mathcal{O}(3^n)$ 



Introduction Solving hard problems

## $\mathcal{NP}\text{-completeness}$

For  $t(n) = 2^n$  seconds

t(1) = 2 seconds t(10) = 17 minutes t(20) = 12 days t(50) = 35,702,052 years t(100) = 40,196,936,841,331,500,000,000 years

Introduction Solving hard problems

# $\mathcal{NP}\text{-}\mathsf{completeness}$

- Digital design and synthesis is full of NP-complete problems
- Graph coloring
- Scheduling
- Graph partitioning
- Satisfiability (and 3SAT)
- Covering
- ...and many more

Introduction Solving hard problems

# $\mathcal{NP}\text{-completeness}$

- There is a class of problems,  $\mathcal{NP}\text{-}\mathsf{complete},$  for which nobody has found polynomial time solutions
- It is possible to convert between these problems in polynomial time
- Thus, if it is possible to solve any problem in  $\mathcal{NP}\text{-}\mathsf{complete}$  in polynomial time, all can be solved in polynomial time
- Unproven conjecture:  $\mathcal{NP} \neq \mathcal{P}$

Introduction Solving hard problems

# $\mathcal{NP}\text{-completeness}$

- What is  $\mathcal{NP}$ ? Nondeterministic polynomial time.
- A computer that can simultaneously follow multiple paths in a solution space exploration tree is nondeterministic. Such a computer can solve  $\mathcal{NP}$  problems in polynomial time.
- I.e., a computer that can simultaneously be in multiple states.
- Nobody has been able to prove either

$$\mathcal{P} \neq \mathcal{NP}$$

or

$$\mathcal{P} = \mathcal{N}\mathcal{P}$$

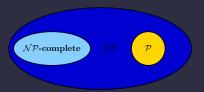
Introduction Solving hard problems

## $\mathcal{NP}$ -completeness

If we define  $\mathcal{NP}$ -complete to be a set of problems in  $\mathcal{NP}$  for which any problem's instance may be converted to an instance of another problem in  $\mathcal{NP}$ -complete in polynomial time, then  $\mathcal{P} \subsetneq \mathcal{NP} \Rightarrow \mathcal{NP}$ -complete  $\cap \mathcal{P} = \emptyset$ 

Introduction Solving hard problems

#### Basic complexity classes



- $\mathcal{P}$  solvable in polynomial time by a computer (Turing Machine)
- $\mathcal{NP}$  solvable in polynomial time by a nondeterministic computer
- $\mathcal{NP}\text{-}\mathsf{complete}$  converted to other  $\mathcal{NP}\text{-}\mathsf{complete}$  problems in polynomial time

Introduction Solving hard problems

## Section outline

3. Computational complexity Introduction Solving hard problems

Introduction Solving hard problems

## How to deal with hard problems

- What should you do when you encounter an apparently hard problem?
- Is it in  $\mathcal{NP}$ -complete?
- If not, solve it
- If so, then what?

Introduction Solving hard problems

## How to deal with hard problems

- What should you do when you encounter an apparently hard problem?
- Is it in  $\mathcal{NP}$ -complete?
- If not, solve it
- If so, then what?

Despair.

Introduction Solving hard problems

## How to deal with hard problems

- What should you do when you encounter an apparently hard problem?
- Is it in  $\mathcal{NP}$ -complete?
- If not, solve it
- If so, then what?

#### Solve it!

Introduction Solving hard problems

#### How to deal with hard problems

- What should you do when you encounter an apparently hard problem?
- Is it in  $\mathcal{NP}$ -complete?
- If not, solve it
- If so, then what?

Resort to a suboptimal heuristic. Bad, but sometimes the only choice.

Introduction Solving hard problems

#### How to deal with hard problems

- What should you do when you encounter an apparently hard problem?
- Is it in  $\mathcal{NP}$ -complete?
- If not, solve it
- If so, then what?

#### Develop an approximation algorithm. Better.

Introduction Solving hard problems

#### How to deal with hard problems

- What should you do when you encounter an apparently hard problem?
- Is it in  $\mathcal{NP}$ -complete?
- If not, solve it
- If so, then what?

Determine whether all encountered problem instances are constrained. Wonderful when it works.

Introduction Solving hard problems

#### One example

O. Coudert. Exact coloring of real-life graphs is easy. *Design Automation*, pages 121–126, June 1997.

Heristic logic minimization

### Outline

- 1. Misc.
- 2. Two-level logic
- 3. Computational complexity
- 4. Espresso
- 5. Homework

Heristic logic minimization

#### Section outline

4. Espresso Heristic logic minimization

Heristic logic minimization

### Heuristic logic minimization

Optimal two-level logic synthesis is  $\mathcal{NP}$ -complete

- Upper bound on number of prime implicants grows  $3^n/n$  where *n* is the number of inputs
- Given > 16 inputs, can be intractable
- However, there have been advances in complete solvers for many functions
  - Optimal solutions are possible for some large functions

Heristic logic minimization

### Heuristic logic minimization

- For difficult and large functions, solve by heuristic search
- Multi-level logic minimization is also best solved by search
- The general search problem can be introduced via two-level minimization
  - Examine simplified version of the algorithms in Espresso

Heristic logic minimization

Espresso two-level logic minimization heuristic

- Generate only a subset of prime implicants
- Carefully selects subset of prime implicants covering on-set
- Guaranteed to be correct
  - May not be optimal

Heristic logic minimization

#### Espresso

Can be viewed in the following

- Start with a potentially optimal algorithm
- Add numerous techniques for constraining the search space
- Uses efficient move order to allow pruning
- Disable backtracking to arrive at a heuristic solver
- Widely used in industry
- Still has room for improvement
  - E.g., early recursion termination

Heristic logic minimization

# Summary

- Properties of two-level logic
- The Quine-McCluskey (tabular) method
- $\mathcal{NP}$ -complete: Why use heuristics?
- Espresso

### Outline

- 1. Misc.
- 2. Two-level logic
- 3. Computational complexity
- 4. Espresso
- 5. Homework

#### Homework assignment one

- Algebraic manipulation (Review)
- K-Maps (Review)
- Quine-McCluskey
- Espresso

#### Next lecture

- More on Espresso algorithm
- Technologies and implementation methods

## Reading assignment

- http://www.writphotec.com/mano/reading\_supplements.html
- More Optimization for Quine–McCluskey