Homework 3

Da)

Cube	Kernel
B	$A C+C D+A D$
C	$A B+B D+D E$
D	$B C+A B+C E$
$A B$	$C+D$
$B C$	$A+D$
$B D$	$C+A$
$C D$	$B+E$

b) initial \#of literals: 12

$$
\begin{aligned}
& L=A B(C+D)+B C D+C D E \\
& L=A B(C+D)+C D(B+C)
\end{aligned}
$$

final $\#$ of |teals: 8
2) a) F

$$
\begin{aligned}
& =A \bar{B} \bar{C}+\bar{A} \bar{C}+\bar{A} B \\
& =A \bar{B} \bar{C}+\bar{A} \bar{C}(1+\bar{B})+\bar{A} B \\
& =A \bar{B} \bar{C}+\bar{A} \bar{B} \cdot \bar{A} \bar{C}+\overline{A B} \\
& =(\bar{A}+\bar{A}) \bar{B} \bar{C}+\bar{A} \bar{C}(B+\bar{B})+\overline{A B} \\
& =\bar{B} \bar{C}+\bar{A} B \bar{B}+\bar{A} \bar{B} \bar{C}+\bar{A} B \\
& =\bar{B} \bar{C}(1+\bar{A})+\bar{A} B(1+\bar{C}) \\
& =\bar{B} \bar{C}+\bar{A} \bar{B} \\
& =(\overline{\bar{B} \bar{C}})(\overline{A B})
\end{aligned}
$$

b)

$$
\begin{aligned}
& F=\overline{B C}+\bar{A} B \\
& =\overline{B C}(1-A)+\overline{A B}(1+\bar{C}) \\
& =\overline{B C}+\overline{A B}+\overline{A B C}+\bar{A} B \overline{B C} \\
& =\overline{B C}+\overline{A B}+\overline{A C}(\bar{B}+B) \\
& =\overline{B C}+\overline{A B}+\overline{A C}+E \bar{B} \\
& =\bar{C}(\bar{A}+\bar{B})+B(\bar{A}+\bar{B}) \\
& =\frac{(B+\bar{C})(\bar{A}+\bar{B})}{(\bar{R}+\bar{C})+(\bar{A}+\bar{B})}
\end{aligned}
$$

2. $F(A, B, C)=A \bar{B} \bar{C}+\bar{A} \bar{C}+\bar{A} B$
(a)

$$
F=\bar{B} \bar{C}+\bar{A} B
$$

$$
\begin{aligned}
F & =\overline{\overline{\overline{B C}+\overline{A B}}} \\
& =\overline{(\overline{B C})(\overline{A B})}
\end{aligned}
$$

(b)
 6 NMOS (2 per NOR)
(c)
3. $F(A, B, C, D)=\bar{A} B C+A D+A C$
(a)

(b)

(c)

4. (a) $G=A C+A D E+B C+B D E$ kernets: $A, B, C, A D, A E, B D, B E, D E$

$$
\begin{aligned}
& G=A C+B C+(A+B) D E \\
& G=(A+B) C+(A+B) D E
\end{aligned}
$$

bernels : $(A+B)$

$$
G=(A+B)(C+D E)
$$

- Problem 4: See slides for further examples of kernel extraction.
- Problem 5: A graph is composed of a set of vertices and edges. Each edge is connected to exactly two vertices. The edges in a directed graph are asymmetric: each has a source and destination (indicated by an arrow). A directed acyclic graph contains no cycles, i.e., it is impossible to start from any vertex and, following edges in the forward direction only, revisit the same vertex again. A tree is a directed acyclic graph containing no reconverging paths.
- Problem 6a:

Key: EST/LST/slack

The circuit does not meet its timing constraints.

- Problem 6b:

A	B	C	L
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{align*}
L(A, B, C) & =\bar{A} \bar{B}+\bar{A} \bar{C}+A B C \tag{1}\\
& =\bar{A}(\bar{B}+\bar{C})+A(B C) \tag{2}\\
& =\bar{A} \overline{(B C)}+A(B C) \tag{3}\\
& =A \oplus \overline{B C} \tag{4}\\
& =\operatorname{XoR}(A, \operatorname{NAND}(B C)) \tag{5}
\end{align*}
$$

Total delay $=6$ (NAND2 followed by XOR2).

- Problem 6c:

