Introduction to Computer Engineering - EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

NORTHWESTERN
UNIVERSITY

The Quine-McCluskey woolevel logic minimization method
Homemork
Review: Minimization techniques

Advantages and disadvantages?

- Algebraic manipulation
- Karnaugh maps
- Quine-McCluskey
- Advanced topic: Kernel extraction
- Advanced topic: Heuristic minimization, e.g., Espresso

Apply De Morgan's theorem

$$
\begin{align*}
\bar{f} & =a b \bar{d}+\bar{c} d+\bar{a} \bar{b} d \tag{1}\\
\bar{f} & =\overline{a b \bar{d}+\bar{c} d+\bar{a} \bar{b} d} \tag{2}\\
f & =\overline{(a b \bar{d})} \cdot \overline{(\bar{c} d)} \cdot \overline{(\bar{a} \bar{b} d)} \tag{3}\\
f & =(\bar{a}+\bar{b}+d)(c+\bar{d})(a+b+\bar{d}) \tag{4}
\end{align*}
$$

- Advanced topic: Read the POS expression directly from the Karnaugh map
- More difficult

$\Sigma=0$	0000	000X	X00X
		00×0	X0X0
		$\times 000$	
$\Sigma=1$	0001	X001	
	0010	X010	
	1000	100X	
		10x0	
$\Sigma=2$	1001	1X01	
	1010	1×10	
$\Sigma=3$	1101	111X	
	1110	11X1	
$\Sigma=4$	1111		

Next lecture - More advanced building blocks

Homemerk
Reading assignment

- Encoders and decoders
- MUXs
- Advanced TG techniques

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, third edition, 2004
- Sections 2.7-2.10
- Sections 4.1-4.5
- Section 4.6 (decoders and multiplexers only)

http://www.deepchip.com/
- If QM doesn't click, please also see the following references
- Randy H. Katz. Contemporary Logic Design. The Benjamin/Cummings Publishing Company, Inc., 1994: pp. 85-88
- John P. Hayes. Introduction to Digital Logic Design.

Addison-Wesley, MA, 1993 pp. 320, 321

- You can get these from me or the library

