Introduction to Computer Engineering - EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Instructor:	Robert Dick	TA:	Neal Oza
Office:	L477 Tech	Office:	Tech. Inst. L375
Email:	dickrp@northwestern.edu	Phone:	847-467-0033
Phone:	847–467–2298	Email:	nealoza@u.northwestern.edu
		TT .	David Bild

Tech. Inst. L470 847-491-2083 Office: Phone d-bild@northwestern.edu Email:

NORTHWESTERN UNIVERSITY

Review: Minimization techniques

Advantages and disadvantages?

- Algebraic manipulation
- Karnaugh maps
- Quine–McCluskey

ine–McCluskey two-level logic minim

Deriving POS

- Advanced topic: Kernel extraction
- Advanced topic: Heuristic minimization, e.g., Espresso

Pace, lab expectations
• Anybody falling behind?
 If something isn't making sense, stop me and I'll elaborate using the chalkboard
I'm glad to do it!
 Lab expectations (lab two and above) Complete schematics Easy to debug, color-coded wiring Terse but clear description

Deriving POS

\backslash	00	01	11	10
00	1	1	0	1
01	0	0	0	0
11	0	1	1	1
10	1	1	0	1

Find SOP form for zeros:

e–McCluskey two-level logic m

 $\overline{f} = ab\overline{z} + \overline{c} d + \overline{a} \overline{b} d$

R. Dick Introduction to Con

uter Engin

ing - EECS 2

Quine-McCluskey two-level logic minimization

- Select minimal cover from prime implicants

n to Computer Eng ing - EECS 20

R. Dick Introduction to Computer Engineering - EECS 203

ne-McCluskey two-level logic minimization m Computing prime implicants X00X 0000 **000X** $\Sigma = 0$ **00X0** X0X0 X000 0001 **X001** 0010 **X010** $\Sigma = 1$ 1000 **100X 10X0** 1X01 1001 $\Sigma = 2$ 1010 1X10 1101 111X $\Sigma = 3$ 1110 11X1 $\Sigma = 4$ 1111

• Review: Minimization overview

- Review: Karnaugh map SOP minimization
- POS using SOP K-map trick
- Quine-McCluskey optimal two-level minimization method

• Compute prime implicants with a well-defined algorithm

- Start from minterms
- · Merge adjacent implicants until further merging impossible
- Unate covering problem
- What is happening?
 - $ab + a\overline{b} = a$

Summary

Apply De Morgan's theorem

P. Dick Introdu

$\overline{f} = ab\overline{d} + \overline{c} d + \overline{a}\overline{b} d$	(1)
$\overline{\overline{f}} = \overline{ab\overline{d} + \overline{c} d + \overline{a} \overline{b} d}$	(2)
$f = \overline{\left(a b \overline{d} \right)} \cdot \overline{\left(\overline{c} d \right)} \cdot \overline{\left(\overline{a} \overline{b} d \right)}$	(3)
$f = \left(\overline{a} + \overline{b} + d ight)\left(c + \overline{d} ight)\left(a + b + \overline{d} ight)$	(4)

• Advanced topic: Read the POS expression directly from the Karnaugh map

R. Dick Introduction to Co

More difficult

ng - EECS 20

The Quine-McCluskey two-level logic minimization method Homework Next lecture – More advanced building blocks	The Quine-McCluskey two-level logic minimization method Homework Reading assignment
 Encoders and decoders MUXs Advanced TG techniques 	 M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, third edition, 2004 Sections 2.7-2.10 Sections 4.1-4.5 Section 4.6 (decoders and multiplexers only)
10 R. Dick Introduction to Computer Engineering - EECS 203	12 R. Dick Introduction to Computer Engineering - EECS 203

Additional references

13

he Quine–McCluskey two-level logic minimization method Homework

http://www.deepchip.com/

14

Computer geek culture reference

R. Dick Introduction to Computer Engineering – EECS 203

- If QM doesn't click, please also see the following references
- Randy H. Katz. *Contemporary Logic Design*. The Benjamin/Cummings Publishing Company, Inc., 1994: pp. 85–88

R. Dick Introduction to Computer Engineering – EECS 203

- John P. Hayes. Introduction to Digital Logic Design. Addison-Wesley, MA, 1993 pp. 320, 321
- You can get these from me or the library