Introduction to Computer Engineering - EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Robert Dick L477 Tech Email:

TA: Office dickrp@northwestern.edu 847–467–2298 847-467-0033 Phone Email: nealoza@u.northwestern.edu

> TT: David Bild Office: Phone Tech. Inst. L470 847-491-2083 Email: d-bild@northwestern.edu

Other TG diagram

Impact of control on input

Two-Level Logic and Canonical Forms

- The previous example illustrated one standard representation (product of sums).
- These standard forms are known collectively as two-level logic:
 - Product of Sums (POS) e.g.

$$f = (a + \overline{b})(\overline{a} + b)$$

• Sum of Products (SOP) e.g.

$$f = \overline{a}\,\overline{b} + ab$$

- Can you see why these two are equivalent?
- Why is this known as two-level logic?

CMOS transmission gate (TG)

TG example

Practice w/ Boolean Minimization

Simplify this expression so that it has the minimal possible literal $% \left(1\right) =\left(1\right) \left(1\right$

 $(a+\overline{b})$ $(\overline{a}b+cd)$

Canonical forms - SOP

For Sum of Products (SOP) the canonical form is constructed out of minterms.

- Product term in which all variables appear in complemented or uncomplemented forms once
- For an n-input function corresponds to one of 2^n possible input combinations
- Use binary representation to enumerate minterms

Two-level logic
Kmaps

Canonical forms - SOP

×	у	z	term	symbol	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m ₇
0	0	0	$\overline{x}\overline{y}\overline{z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{x}\overline{y}z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{x} y \overline{z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	\overline{x} yz	m_3	0	0	0	1	0	0	0	0
1	0	0	$x\overline{y}\overline{z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$x\overline{y}z$	m_5	0	0	0	0	0	1	0	0
1	1	0	xy₹	m_6	0	0	0	0	0	0	1	0
1	1	1	xyz	m_7	0	0	0	0	0	0	0	1

11 R. Dick Introduction to Computer Engineering – EECS 203

Transmission gates

Canonical forms - POS

For Products of Sums (POS) the canonical form is constructed out of $\it maxterms$.

- Sum term in which all variables appear in complemented or uncomplemented forms once
- Use binary representation to enumerate maxterms (note: function is not true for maxterms)

R. I

Introduction to Computer Engineering – EECS 2

Transmission gates
Two-level logic
Kmaps
Homework

Using Canonical Products of Sums Representation

Convenient representation uses \prod operator and minterms:

$$f(x_1,\ldots,x_n)=\prod M_i$$

For given function f, list all maxterms for which the function is false:

$$f(a,b,c) = (a+\overline{c})(\overline{a}+b)$$

$$= M_1 \cdot M_3 \cdot M_4 \cdot M_5$$

$$= \prod M(1,3,4,5)$$

F

Introduction to Computer Engineering – EECS 203

ransmission gate
Two-level logic
Kmap

Logic minimization motivation

- Want to reduce area, power consumption, delay of circuits
- Hard to exactly predict circuit area from equations
- Can approximate area with SOP cubes
- Minimize number of cubes and literals in each cube
- Algebraic simplification difficult
 - Hard to guarantee optimality

Transmission gates
Two-level logic
Kmaps
Homework

Using Canonical Sum of Products Representation

Convenient representation uses \sum operator and minterms:

$$f(x_1,\ldots,x_n)=\sum m_i$$

For given function f, list all minterms for which the function is true:

$$f(a, b, c) = ab + \overline{a} \, \overline{c}$$

= $(m_6 + m_7) + (m_0 + m_2)$
= $\sum m(0, 2, 6, 7)$

R. Dick Introduction to Computer Engine

Two-level logic
Kmaps

Canonical forms - POS

Х	у	z	term	symbol	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7
0	0	0	x + y + z	M_0	0	1	1	1	1	1	1	1
0	0	1	$x + y + \overline{z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$x + \overline{y} + z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$x + \overline{y} + \overline{z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{x} + y + z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{x} + y + \overline{z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{x} + \overline{y} + z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{x} + \overline{y} + \overline{z}$	M_7	1	1	1	1	1	1	1	0

R. Dick Introduction to Computer Engineering – EECS 203

Transmission gates
Two-level logic
Kmaps

More examples of two-level logic

$$f(a, b, c, d) = \sum m(1, 4, 8, 10, 13, 15)$$

$$f(w, x, y, z) = \prod M(5, 13, 14)$$

$$f(u, v) = u + \overline{u} \overline{v}$$

R. Dick Introduction to Computer Engineering – EECS 20

Two-level logic
Kmaps

Logic minimization motivation

- K-maps work well for small problems
 - Too error-prone for large problems
 - Don't ensure optimal prime implicant selection
- Quine-McCluskey optimal and can be run by a computer
 - Too slow on large problems
- Some advanced heuristics usually get good results fast on large problems
- Want to learn how these work and how to use them?
- Take Advanced Digital Logic Design

Boolean function minimization

- Algebraic simplification
 - Not systematic
 - How do you know when optimal solution has been reached?
- Optimal algorithm, e.g., Quine-McCluskey
 - Only fast enough for small problems
 - Understanding these is foundation for understanding more advanced methods
- Not necessarily optimal heuristics
 - Fast enough to handle large problems

Karnaugh maps

Sum of products (SOP) - KMap

Equivalent way of expressing the same function:

Implicants

For now, treat \times as a "wildcard"

Karnaugh maps (K-maps)

- Fundamental attribute is adjacency
- Useful for logic synthesis
- Helps logic function visualization
- General Idea: Circle groups of output values (typically 1's)
- Result: Circled terms correspond to minimized product terms

Sum of products (SOP) - Truth table

$$f = (\overline{a}\,\overline{b}\,) + (ab)$$

Some definitions

- implicant a product term (or sum term) which covers/includes one or more minterms (or maxterms)
- prime implicant implicant that cannot be covered by a more general implicant (i.e. one with fewer literals)
- essential prime implicants cover an output of the function that no other prime implicant (or sum thereof) is able to cover

K-map example

- Minimize $f(a, b, c, d) = \sum (1, 3, 8, 9, 10, 11, 13)$
- $f(a, b, c, d) = a\overline{b} + \overline{b}d + a\overline{c}d$

K-map simplification technique

For all minterms

- Find maximal groupings of 1's and X's adjacent to that minterm.
- \bullet Remember to consider top/bottom row, left/right column, and corner adjacencies.
- These are the prime implicants.

- If there remain 1's not covered by essential prime implicants,
- Then select the smallest number of prime implicants that cover the remaining 1's.
- This can be difficult for complicated functions.
- Will present an algorithm for this in a future lecture.

• Direct reading by covering zeros and inverting variables

Or

- Invert function
- Do SOP
- Invert again
- Apply De Morgan's laws
- SOP from Karnaugh map

K-map simplification technique

- Revisit the 1's elements in the K-map.
- If covered by single prime implicant, the prime is essential, and participates in final cover.
- The 1's it covers do not need to be revisited.

POS K-map example

- Minimize $f(a, b, c) = \prod (2, 4, 5, 6)$
- $f(a,b,c) = (\overline{b} + c)(\overline{a} + b)$

Six-variable K-map example

 $z(a, b, c, d, e, f) = \sum (2, 8, 10, 18, 24, 26, 34, 37, 42, 45, 50, 53, 58, 61)$

Six-variable K-map example

DON'T CARE logic

- All specified Boolean values are 0 or 1
- However, during design some values may be unspecified
 - Don't care values (\times)
- ×s allow circuit optimization, i.e.,
 - Incompletely specified functions allow optimization

Satisfiability Don'T CARES

- Input can never occur
- This can happen within a circuit
- Some modules will not be capable of producing certain outputs

Don't care K-map example

- Minimize $f(w, x, y, z) = \sum (1, 3, 8, 9, 10, 11, 13) + d(5, 7, 15)$
- $f(w, x, y, z) = w\overline{x} + z$

Six-variable K-map example

$$z(a, b, c, d, e, f) = \overline{d} e \overline{f} + a d \overline{e} f + \overline{a} C \overline{d} \overline{f}$$

DON'T CARE values

Instead, leave these values undefined (\times)

- Also called DON'T CARE values
- Allows any function implementing the specified values to be used
- E.g., could use $(\overline{a}\overline{b}) + (ab)$
- However, best to use simpler 1

Observability Don'T CARES

Output will be ignored for certain inputs

Two-level logic is necessary

Some Boolean functions can not be represented with one logic level $(\overline{a}\,\overline{b}\,)+(ab)$

Transmission gates Two-level logic Kmaps

Two-level logic is sufficient

- All Boolean functions can be represented with two logic levels
- ullet Given k variables, 2^K minterm functions exist
- Select arbitrary union of minterms

Consider a 4-term XOR (parity) gate: $a \oplus b \oplus c \oplus d$ $(\overline{a} \, \overline{b} \, \overline{c} \, d) + (\overline{a} \, \overline{b} \, \overline{c} \, \overline{d}) + (\overline{a} \, b \overline{c} \, \overline{d}) + (\overline{a} \, b \overline{c} \, \overline{d}) + (ab\overline{c} \, d) + (ab\overline{c} \, d) + (ab\overline{c} \, \overline{d}) + (ab\overline{c} \, \overline{d}) + (ab\overline{c} \, \overline{d})$

Transmission gate

Two-level weakness

Two-level representations also have other weaknesses

- Conversion from SOP to POS is difficult
 - Inverting functions is difficult
 - \bullet --ing two SOPs or +ing two POSs is difficult
- \bullet Neither general POS or SOP are canonical
 - Equivalence checking difficult
- ullet POS satisfiability $\in \mathcal{NP}$ -complete

Two-level well-understood

- As we will see later, optimal minimization techniques known for two-level
- However, optimal two-level solution may not be optimal solution
 - Sometimes a suboptimal solution to the right problem is better than the optimal solution to the wrong problem

- Two-level representation is exponential
- However, it's a simple concept
 - Is $\sum_{i=1}^{n} x_i$ odd?
- Problem with representation, not function

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Section 2.6
- Also read TTL reference, Don Lancaster. TTL Cookbook. Howard W. Sams & Co., Inc., 1974, as needed