Introduction to Computer Engineering - EECS 203 http://ziyang.eecs. northwestern.edu/~dickrp/eecs203/

NORTHWESTERN
UNIVERSITY

Simplify this expression so that it has the minimal possible literal count:

$$
(a+\bar{b}) \overline{(\bar{a} b+c d)}
$$

For Sum of Products (SOP) the canonical form is constructed out of minterms.

- Product term in which all variables appear in complemented or uncomplemented forms once
- For an n-input function corresponds to one of of 2^{n} possible input combinations
- Use binary representation to enumerate minterms
- Can you see why these two are equivalent?
- Why is this known as two-level logic?

x	y	z	term	symbol	m_{0}	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}	m_{7}
0	0	0	$\bar{x} \bar{y} \bar{z}$	m_{0}	1	0	0	0	0	0	0	0
0	0	1	$\bar{x} \bar{y} z$	m_{1}	0	1	0	0	0	0	0	0
0	1	0	$\bar{x} y \bar{z}$	m_{2}	0	0	1	0	0	0	0	0
0	1	1	$\bar{x} y z$	m_{3}	0	0	0	1	0	0	0	0
1	0	0	$x \bar{y} \bar{z}$	m_{4}	0	0	0	0	1	0	0	0
1	0	1	$x \bar{y} z$	m_{5}	0	0	0	0	0	1	0	0
1	1	0	$x y \bar{z}$	m_{6}	0	0	0	0	0	0	1	0
1	1	1	$x y z$	m_{7}	0	0	0	0	0	0	0	1

Convenient representation uses Π operator and minterms:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod M_{i}
$$

For given function f , list all maxterms for which the function is false:

$$
\begin{aligned}
f(a, b, c) & =(a+\bar{c})(\bar{a}+b) \\
& =M_{1} \cdot M_{3} \cdot M_{4} \cdot M_{5} \\
& =\prod M(1,3,4,5)
\end{aligned}
$$

- Want to reduce area, power consumption, delay of circuits
- Hard to exactly predict circuit area from equations
- Can approximate area with SOP cubes
- Minimize number of cubes and literals in each cube
- Algebraic simplification difficult
- Hard to guarantee optimality

Convenient representation uses \sum operator and minterms:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum m_{i}
$$

For given function f , list all minterms for which the function is true:

$$
f(a, b, c)=a b+\bar{a} \bar{c}
$$

$$
=\left(m_{6}+m_{7}\right)+\left(m_{0}+m_{2}\right)
$$

$$
=\sum m(0,2,6,7)
$$

x	y	z	term	symbol	M_{0}	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}
0	0	0	$x+y+z$	M_{0}	0	1	1	1	1	1	1	1
0	0	1	$x+y+\bar{z}$	M_{1}	1	0	1	1	1	1	1	1
0	1	0	$x+\bar{y}+z$	M_{2}	1	1	0	1	1	1	1	1
0	1	1	$x+\bar{y}+\bar{z}$	M_{3}	1	1	1	0	1	1	1	1
1	0	0	$\bar{x}+y+z$	M_{4}	1	1	1	1	0	1	1	1
1	0	1	$\bar{x}+y+\bar{z}$	M_{5}	1	1	1	1	1	0	1	1
1	1	0	$\bar{x}+\bar{y}+z$	M_{6}	1	1	1	1	1	1	0	1
1	1	1	$\bar{x}+\bar{y}+\bar{z}$	M_{7}	1	1	1	1	1	1	1	0

$$
\begin{aligned}
f(a, b, c, d) & =\sum m(1,4,8,10,13,15) \\
f(w, x, y, z) & =\prod M(5,13,14) \\
f(u, v) & =u+\bar{u} \bar{v}
\end{aligned}
$$

- K-maps work well for small problems
- Too error-prone for large problems
- Don't ensure optimal prime implicant selection
- Quine-McCluskey optimal and can be run by a computer - Too slow on large problems
- Some advanced heuristics usually get good results fast on large problems
- Want to learn how these work and how to use them?
- Take Advanced Digital Logic Design

- Fundamental attribute is adjacency
- Useful for logic synthesis
- Helps logic function visualization
- General Idea: Circle groups of output values (typically 1's)
- Result: Circled terms correspond to minimized product terms

Equivalent way of expressing the same function:

$(\bar{a} \bar{b})+(a b)$

For now, treat \times as a "wildcard"

- Minimize $f(a, b, c, d)=\sum(1,3,8,9,10,11,13)$
- $f(a, b, c, d)=a \bar{b}+\bar{b} d+a \bar{c} d$

For all minterms

- Find maximal groupings of 1's and X's adjacent to that minterm.
- Remember to consider top/bottom row, left/right column, and corner adjacencies.
- These are the prime implicants

| 28 | R. Dick |
| :--- | :--- | Introduction to Computer Engineering - EECS 203

- If there remain 1's not covered by essential prime implicants,
- Then select the smallest number of prime implicants that cover the remaining 1 's.
- This can be difficult for complicated functions.
- Will present an algorithm for this in a future lecture

- Minimize $f(a, b, c)=\Pi(2,4,5,6)$
- $f(a, b, c)=(\bar{b}+c)(\bar{a}+b)$
- Invert function
- Do SOP
- Invert again
- Apply De Morgan's laws

- Revisit the 1's elements in the K-map.
- If covered by single prime implicant, the prime is essential, and participates in final cover.
- The 1's it covers do not need to be revisited.

$$
(\bar{a}+b) \cdot(a+\bar{b})
$$

R. Dick Introduction to Computer Engineering - EECS 203

- All specified Boolean values are 0 or 1
- However, during design some values may be unspecified
- Don't care values (\times)
- $\times s$ allow circuit optimization, i.e.,
- Incompletely specified functions allow optimization

- Input can never occur
- This can happen within a circuit
- Some modules will not be capable of producing certain outputs

- Minimize $f(w, x, y, z)=\sum(1,3,8,9,10,11,13)+d(5,7,15)$
- $f(w, x, y, z)=w \bar{x}+z$

$$
z(a, b, c, d, e, f)=\bar{d} e \bar{f}+a d \bar{e} f+\bar{a} C \bar{d} \bar{f}
$$

Instead, leave these values undefined (\times)

- Also called Don't Care values
- Allows any function implementing the specified values to be used
- E.g., could use $(\bar{a} \bar{b})+(a b)$
- However, best to use simpler 1

Output will be ignored for certain inputs

Some Boolean functions can not be represented with one logic level $(\bar{a} \bar{b})+(a b)$

- All Boolean functions can be represented with two logic levels
- Given k variables, 2^{K} minterm functions exist
- Select arbitrary union of minterms

Consider a 4-term XOR (parity) gate: $a \oplus b \oplus c \oplus d$ $(\bar{a} \bar{b} \bar{c} d)+(\bar{a} \bar{b} c \bar{d})+(\bar{a} b \bar{c} \bar{d})+(\bar{a} b c d)+(a b \bar{c} d)+(a b c \bar{d})+$ $(a \bar{b} \bar{c} \bar{d})+(a \bar{b} c d)$

Two-level representations also have other weaknesses

- Conversion from SOP to POS is difficult
- Inverting functions is difficult
- --ing two SOPs or +ing two POSs is difficult
- Neither general POS or SOP are canonical
- Equivalence checking difficult
- POS satisfiability $\in \mathcal{N} \mathcal{P}$-complete
- As we will see later, optimal minimization techniques known for two-level
- However, optimal two-level solution may not be optimal solution
- Sometimes a suboptimal solution to the right problem is better than the optimal solution to the wrong problem

- Two-level representation is exponential
- However, it's a simple concept
- Is $\sum_{i}^{n} x_{i}$ odd?
- Problem with representation, not function

	$\begin{array}{r} \text { nsmission gates } \\ \text { Two-level logic } \\ \text { Kmaps } \\ \text { Homework } \end{array}$
Reading assignment	

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Section 2.6
- Also read TTL reference, Don Lancaster. TTL Cookbook. Howard W. Sams \& Co., Inc., 1974, as needed

