		r Engineering – EECS 203 stern.edu/~dickrp/eecs203/	Quiz (ungraded)
Instructor: Office: Email: Phone:	Robert Dick L477 Tech dickrp@northwestern.edu 847–467–2298	TA: Neal Oza Office: Tech. Inst. L375 Phone: 847-467-0033 Email: nealoza@u.northwestern.edu TT: David Bild Office: Tech. Inst. L470 Phone: 847-491-2083 Email: d-bild@northwestern.edu	 What is the rel formula? Is it of What is the rel combinational What quirks do What is signal What practices
olean al;	UNIV Quiz (ungraded) Boolean algebra Homework	WESTERN ERSITY	³ Axioms of Boole

R. Dick Introduction to Computer Engineering – EECS 203

10

۰	What is the relationship between a truth table and a Boolean formula? Is it one/many-to-one/many?
•	What is the relationship between a Boolean formula and a combinational circuit? Is it one/many-to-one/many?
•	What quirks does the CMOS implementation technology have?

quirks does the CMOS implementation technology have?

R. Dick Introduction to Computer Engineering – EECS 203

R. Dick Introduction to Computer Engineering – EECS 203

R. Dick Introduction to Computer Engineering – EECS 203

is signal restoration or voltage regeneration?

Quiz (ungraded) Boolean algebra Homework

Boolean algebra

practices are unsafe in switch-based design? Why?

 $\exists x, y \in B \text{ s.t. } x \neq y$

closure	$\forall x, y \in B$	$xy \in B$
		$x + y \in B$
commutative laws	$\forall x, y \in B$	xy = yx
		x + y = y + x
identities	$0, 1 \in B, \forall x \in B$	x1 = x
		x + 0 = x

Quiz (ungraded) Boolean algebra Homework Review: AND	Quiz (ungreded) Boolean algebra Homework
$\begin{array}{c cccc} a & b & a & b \\ \hline 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}$ $a AND b = a b$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Will show Karnaugh map later	$a\ OR\ b=a+b$

11 R. Di	ck Introduction to Computer Engineering – EECS 203		12 R. Dick	Introduction to Computer Engineering - EECS 203
Quiz (ungrade Boolean alget	d)	l	Quiz (ungraded) Boolean algebra	
Boolean algeb Homewo	ra rk		Boolean algebra Homework	
Review: NOT			Different representations pos	ssible
<u>a ā</u> 0 1 1 0 <i>NC</i>	a 		$Z = ((C+D)\overline{B})\overline{A}$	$Z = (C+D)\overline{A}\overline{B}$

Quiz (ungraded) Boolean algebra Homework	
Simplifying logic functions	

B Dick Introduction to Computer Engineering – EECS 203

۰	Minimize	literal	count	(related	to	gate	count,	delay)
---	----------	---------	-------	----------	----	------	--------	--------

- Minimize gate count
- Minimize levels (delay)
- Trade off delay for area
 - Sometimes no real cost

Quiz (ungraded) Boolean algebra Homework	
Proving theorems $=$ simplific	ation

iter Engir

ing - FECS 203

Prove $XY + X\overline{Y} = X$

$XY + X\overline{Y} = X(Y + \overline{Y})$	distributive law
$X(Y + \overline{Y}) = X(1)$	complementary law
X(1) = X	identity law

Prove X + XY = X

X + XY = X1 + XY	identity law
X1 + XY = X(1 + Y)	distributive law
X(1+Y)=X1	identity law
X1 = X	identity law

B Dick Introduction to Computer Engineering – EECS

16	R. Dick	Introduction to Computer Engineering – EECS 203
	Quiz (ungraded) Boolean algebra Homework	
Literals		

• Each appearance of a variable (complement) in expression

R. Dick Introduction to Computer Engineering – EECS 203

- Fewer literals usually implies simpler to implement
- E.g., $Z = A\overline{B}C + \overline{A}B + \overline{A}B\overline{C} + \overline{B}C$
 - Three variables, ten literals

Quiz (ungraded) Boolean algebra Homework NANDs and NORs	Quiz (ungraded) Bodean algebra Homework Summary
• Can be implemented in CMOS • More on this later • X NAND $Y = \overline{XY}$ • X NOR $Y = \overline{X + Y}$ • Do we need inverters?	 Administrative details Finished CMOS and basic gates Boolean algebra
19 R. Dick Introduction to Computer Engineering – EECS 203 Quiz (ungraded) Boolean algebra Homework Reading assignment	20 R. Dick Introduction to Computer Engineering – EECS 203 Quiz (ungraded) Boolean algebra Homework Next lectures
 M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008 	 Karnaugh maps Visual minimization We'll also learn the optimal Quine-McCluskey method

23

• Sections 2.4 and 2.5

22

R. Dick Introduction to Computer Engineering – EECS 203

• We'll also learn the optimal Quine-McCluskey method

R. Dick Introduction to Computer Engineering – EECS 203

• Optimal two-level minimization is fun!