			Grading scheme
Email: dick	7 Tech C «rp@northwestern.edu P 4672298 E T C P	A: Neal Oza Diffice: Tech. Inst. L375 Thone: 847-467-0033 mail: nealoza@u.northwestern.edu T: David Bild Diffice: Tech. Inst. L470 Thone: 847-491-2083 mail: d-bild@northwestern.edu	 15% homeworks 35% labs 20% midterm exam 30% final exam
	NORTHWE		
ned schedı	Administrative Stuff Review Switch Models ansistors and CMOS Design Homework		3 R. Dick Introduction to Computer Engineering EECS 203 Administrative Stuff Review Switch Models Transistors and CMO Beign Homework Review

- Mondays: Labs assigned and collected
- Wednesdays: Homeworks collected and assigned
- Friday's class will normally focus on the lab and homework of the week, and will be given by Neal Oza

- What is a truth table?
- Combinational vs. sequential logic?
- Symbol and notation for AND, OR, NOT?
- Other gates also exist, e.g., NAND, NOR, XOR, XNOR

4 R. Dick	Introduction to Computer Engineering – EECS 203
Administrative Stuff Review Transistors and (MOS Design Homework	
Case study of simple combin Seven-segment display	ational logic design
 Given: A four-bit binary input Display a decimal digit ranging from zero to nine 	L1 L4 L6 L2
 Use a seven-segment display 	15 17

L3

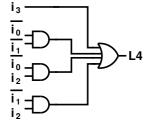
ing – EECS :

Transistors a	and CMC	Revie h Mod	els gn		
Case study – Seven	-seg	gme	nt		
	i3	i ₂	i_1	i ₀	dec
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
	0	1	0	0	4
	0	1	0	1	5
	0	1	1	0	6
	0	1	1	1	7
	1	0	0	0	8
	1	0	0	1	9

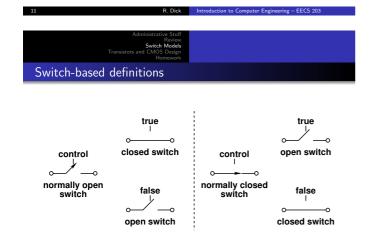
Administrative Stuff Review Switch Models Transistors and CMOS Design Homework								
Case study – Seven-segment								
	i ₃	i ₂	i_1	i ₀	dec	L1	L2	L3
	0	0	0	0	0	1	0	1
L4 L6	0	0	0	1	1	0	0	0
	0	0	1	0	2	1	1	1
	0	0	1	1	3	1	1	1
L2	0	1	0	0	4	0	1	0
	0	1	0	1	5	1	1	1
	0	1	1	0	6	1	1	1
L5 L7	0	1	1	1	7	1	0	0
	1	0	0	0	8	1	1	1
	1	0	0	1	9	1	1	0

R. Dick Introduction to Computer Engineering – EECS 203

R. Dick Introduction to Computer Engine


Implement L4

i3	i2	i1	i ₀	dec	L4
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	2 3	0
0	0	1	1	3	0
0	1	0	0	4	1
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	1
1	0	0	1	9	1

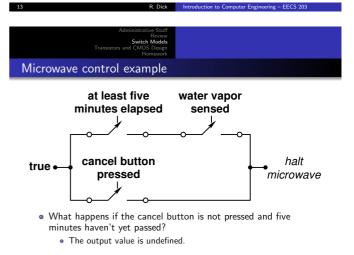

R. Dick Introduction to Computer Engineering – EECS 203

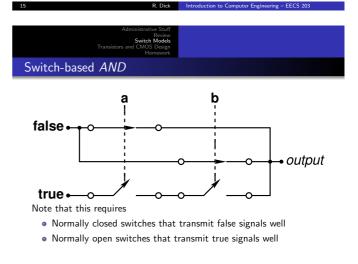
Administrative Stuff Review Switch Models Transistors and CMOS Design Homework

L4 implementation

In a future lecture, I'll explain how to do this sort of design.

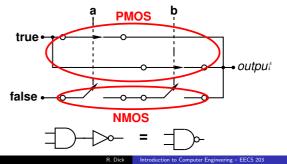
14 R. Dick	Introduction to Computer Engineering – EECS 203
Administrative Stuff Review Switch Modes Transistors and CMOS Design Homework	
Constraints on network outp	ut


Under all possible combinations of input values

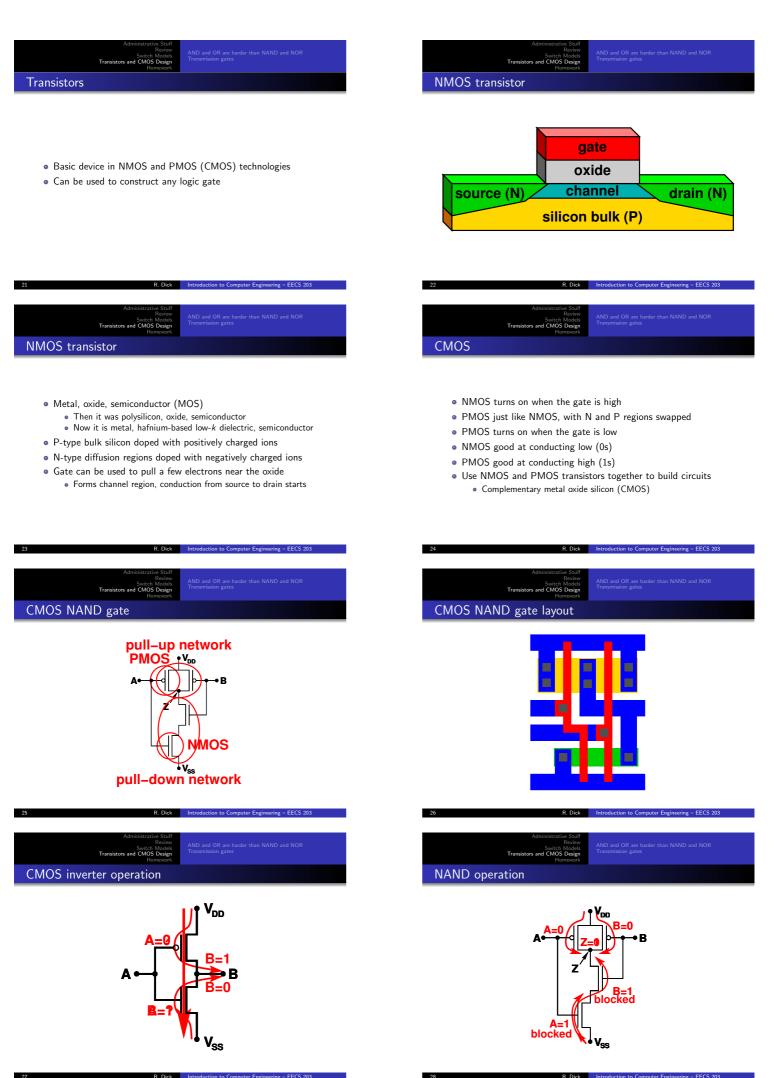

- Each output must be connected to an input value
- No output may be connected to conflicting input values

R. Dick

- A switch shorts or opens two points dependant on a control signal
- Used as models for digital transistors
- Why is using normally open and normally closed particularly useful for CMOS?
 - NMOS and PMOS transistors easy to model



R. Dick Introduction to Computer Engineering – EECS 203



Therefore, $\it NAND$ and $\it NOR$ gates are used in CMOS design instead of $\it AND$ and $\it OR$ gates

- Administrative Stuff Rociov Switch Models Transmission and CMOS Design Homework Relationship with CMOS
 - Metal Oxide Semiconductor
 - Positive and negative carriers
 - Complimentary MOS
 - PMOS gates are like normally closed switches that are good at transmitting only true (high) signals
 - NMOS gates are like normally open switches that are good at transmitting only false (low) signals

Introduction to Computer Engi

29	R. Dick	Introduction to Computer Engineering – EECS 203	31
	Administrative Stuff Review Switch Models Transistors and CMOS Design Homework	AND and OR are harder than NAND and NOR Transmission gates	
NMC	S/PMOS transistors fo	r AND/OR	NMOS tr

- V_T , or threshold voltage, is commonly 0.7 V
- NMOS conducts when $V_{GS} > V_T$
- PMOS conducts when $V_{GS} < -V_T$
- What happens if an NMOS transistor's source is high?
- Or a PMOS transistor's source is low?
- Alternatively, if one states that $V_{TN}=0.7$ V and $V_{TP}=-0.7$ V then NMOS conducts when $V_{GS}>V_{TN}$ and PMOS conducts when $V_{GS}< V_{TP}$

32	R. Dick	Introduction to Computer Engineering – EECS 203		
Transistors and CMOS	Review 1 Models	AND and OR are harder than NAND and NOR Transmission gates		
NMOS/PMOS transistors for AND/OR				

- If an NMOS transistor's input were V_{DD} (high), for $V_{GS} > V_{TN}$, the gate would require a higher voltage than V_{DD}
- If an PMOS transistor's input were V_{SS} (low), for $V_{GS} < V_{TP}$, the gate would require a lower voltage than V_{SS}

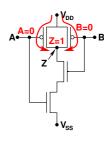
33 R. Dick Introduction to Computer Engineering – EECS 203
Administrative Stuff
Review
Switch Models
Transistors and CMOS Design
Homework
NAND/NOR easy to build in CMOS

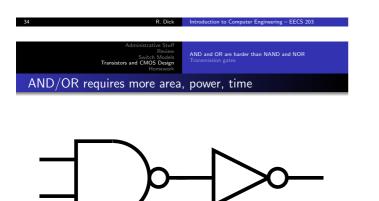
gate

oxide

channel

silicon bulk (P)


AND and OR are ha


drain (N)

Switch Mo s and CMOS De

ansistor

source (N)

R. Dick Introduction to Computer Engineering - EECS 203

- NMOS is good at transmitting 0s
 Bad at transmitting 1s
- PMOS is good at transmitting 1s
 Bad at transmitting 0s
- To build a switch, use both: CMOS

Administrative Stuff Review Transistors and CMOS Design CCMOS transmission gate (TG)	Administrative Stuff Review Switch Models Transistors and CMOS Design Homework Other TG diagram
39 R. Dick Introduction to Computer Engineering EECS 203	40 R. Dick Introduction to Computer Engineering – EECS 203
Administrative Stuff Review Switch Models Transistors and CMOS Design Homework	Administrative Stuff Review Switch Models Transistors and CMOS Design Homework
What can we build with TGs?	Computer geek culture reference
• Anythingtry some examples.	http://slashdot.org/http://www.python.org/

42

R. Dick Introduction to Computer Engineering – EECS 203

Administrative Stuff Review Switch Models Transistors and CMOS Design Homework	
Reading assignment	

R Dick Introd

ing - FECS 203

er Eng

• M. Morris Mano and Charles R. Kime. *Logic and Computer Design Fundamentals*. Prentice-Hall, NJ, fourth edition, 2008

44 R. Dick Introduction to Computer Engineering – EECS 203

• Sections 2.3–2.5

//1