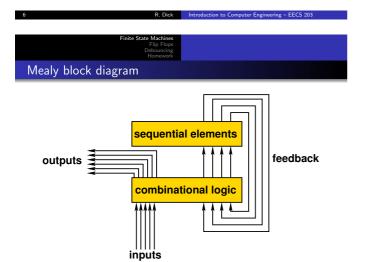
	uction to Compute tp://ziyang.eecs.northwe		eering – EECS 203 µ/~dickrp/eecs203/
Instruct Office: Email: Phone:	or: Robert Dick L477 Tech dickrp@northwestern.edu 847–467–2298	TA: Office: Phone: Email: TT: Office: Phone: Email:	A47-467-0033 nealoza@u.northwestern.edu David Bild Tech. Inst. L470
	NORTHV	WEST	ERN
	Finite State Machines Flip Flops Debouncing Homework		
Word des	cription to state dia	agram	

• We can enumerate the inputs on which an apple should be released

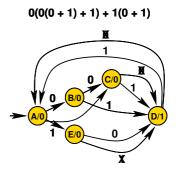

$$\label{eq:dd} \begin{aligned} ddd+ddq+dq+qd+qq\\ d(dd+dq+q)+q(d+q)\\ d(d(d+q)+q)+q(d+q) \end{aligned}$$
 For $d,\ i=0,\ \text{for}\ q,\ i=1$

$$0(0(0+1)+1)+1(0+1)$$

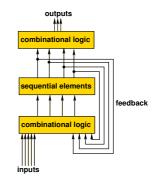
Finite State Machines	
Flip Flops Debouncing Homework	
State diagram to state table	

ng – EECS

Current state	ne sta i=0	ext ate i=1	output (r)
А	В	E	0
В	С	D	0
С	D	D	0
D	А	A	1
Е	D	D	0

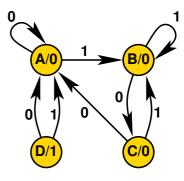


Word description to state diagram

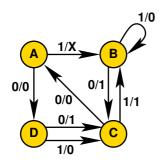

- Design a vending machine controller that will release (output signal r) an apple as soon as 30¢ have been inserted
- The machine's sensors will clock your controller when an event occurs. The machine accepts only dimes (input signal *d*) and quarters (input signal *q*) and does not give change
- When an apple is removed from the open machine, it indicates this by clocking the controller with an input of d
- The sensors use only a single bit to communicate with the controller

R. Dick Introduction to Computer Engineering – EECS 203

Finite State Machines Filip Flops Debouncing Homework
Word description to state diagram

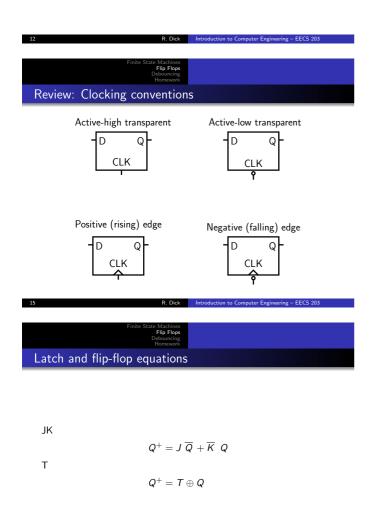


Finite State Machines Plip Flogs Debuncing Homework Moore block diagram


R. Dick Introduction to Computer Engineering – EECS 203

Moore FSMs

Flip Flips Debouncing Homework


Mealy FSMs

Finite State Machines Flip Flops Debouncing Homework

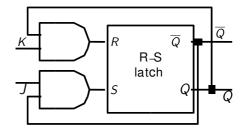
FSM design summary

- Specify requirements in natural form
- Manually derive state diagram
 - Automatic way to go from English to FSM, however more theory required
 - Can minimize state count, however, more theory also required
 - See me if you want more information on this, or take a compilers course and a graduate-level switching theory course, or take my ECE 303
- ${\ensuremath{\, \bullet \,}}$ Assign values to states to minimize logic complexity
- Optimize implementation of state and output functions

R. Dick Introduction to Computer Engineering – EECS 203

Mealv	tabular	form	

		s^+/q	
	s	0	1
	A	D/C) B/X
	В	C/1	B/0
	С	A/0	B/1
I	D	C/1	C/0


• Latches: Level sensitive

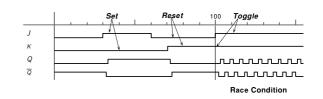
11

• Flip-flops: Edge-triggered

14	R. Dick	Introduction to Computer Engineering - EECS 203
	Finite State Machines Flip Flops	
	Debouncing Homework	
Latch and fli	ip-flop equations	
RS		
K5		_
	$Q^+ = S$	+R Q
D		
	$Q^+ = D$	
	4 5	

16	R. Dick	Introduction to Computer Engineering – EECS 203
	Finite State Machines Flip Flops Debouncing Homework	
JK latch		

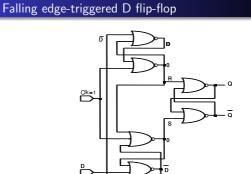
ing - EECS 203


Use output feedback to ensure that $RS \neq 11$ $Q^+ = Q ~\overline{K} ~+ \overline{Q} ~J$

Flip Flops Debouncing

JK latch

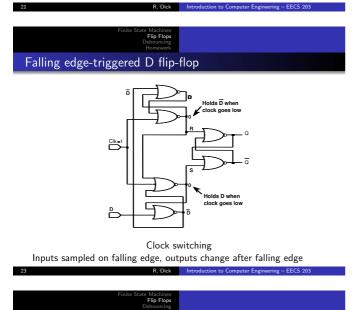
J	Κ	Q	Q^+	
0	0	0	0	hold
0	0	1	1	noiu
0	1	0	0	reset
0	1	1	0	reset
1	0	0	1	cot
1	0	1	1	set
1	1	0	1	torrlo
1	1	1	0	toggle

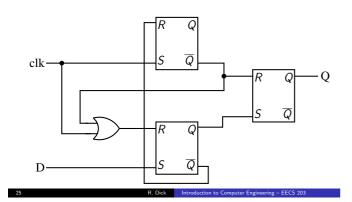

R. Dick Introduction to Co

ing - EECS 203

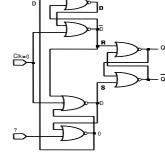
ing - FECS 203

19 R. Dick Int Flip Flops Falling edge-triggered D flip-flop


- Use two stages of latches
- When clock is high
 - First stage samples input w.o. changing second stage
- Second stage holds value
- When clock goes low
 - First stage holds value and sets or resets second stage
 - Second stage transmits first stage
- $Q^+ = D$
- One of the most commonly used flip-flops

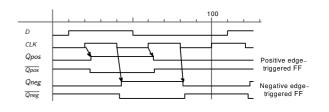

R Dick Int

Flip Flop


Clock high

Another view of an edge-triggered DFF

Flip Flops Falling edge-triggered D flip-flop


Flip Flops

Clock low

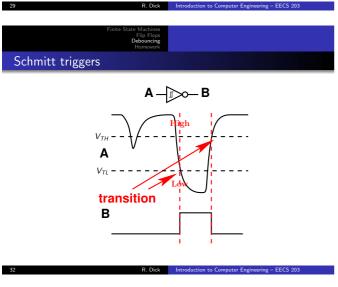
R. Dick ng - EECS 203

R. Dick Introduction to Computer Engineering – EECS 203

Edge triggered timing

Finite State Machines Fip Flops Debouncing Homework	Finite State Machines Filip Flops Debourcing Homework
RS clocked latch	JK flip-flop

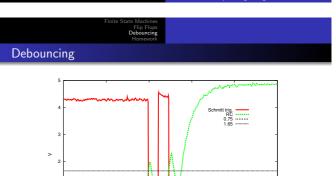
- Storage element in narrow width clocked systems
- Dangerous
- Fundamental building block of many flip-flop types


- Versatile building block
- Building block for D and T flip-flops
- Has two inputs resulting in increased wiring complexity
- Edge-triggered varieties exist

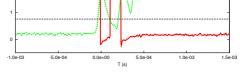
27 R. Dick	Introduction to Computer Engineering – EECS 203	28 R. Dick	Introduction to Computer Engineering – EECS 203
Finite State Machines Flip Flop Debouncing Homework		Finite State Machines Flip Flops Debouncing Homework	
D flip-flop		Debouncing	

- Minimizes input wiring
- Simple to use
- Common choice for basic memory elements in sequential circuits

- What happens if multiple pulses? • Mutliple state transitions
- Need to clean up signal



- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Review Sections 5.1–5.7
 - If FSMs don't make sense now, please ask questions, or see me
 FSMs are tricky at first Almost everybody has this moment of


R. Dick Introduction to Computer Engineering – EECS 203

- epiphany at which they suddenly make sense
- Section 9.1-9.6

- EECS 202

ing – EECS 20

Flip Fl Debounc Home Computer geek culture references

R. Dick

- Parsers and lexical analyzers
- Writing problem-specific languages
- A. V. Aho, R. Sethi, and J. D. Ullman. Compilers principles, techniques, and tools. Addison-Wesley, MA, 1986
- Lex and yacc
- Flex and bison