Introduction to Computer Engineering - EECS 203 http://ziyang.eecs. northwestern.edu/~dickrp/eecs203/

NORTHWESTERN
UNIVERSITY

Unicode: 16-bit

- Similar to ASCII
- International
- Allows about $2^{16}=65,536$ characters
- Enough for symbolic writing systems

Consider adding 9 (1001) and 3 (0011)

Why an extra column?

Binary-coded decimal

- Wastes fractional bit for alignment
- ASCII: 7-bit characters
- Parity
- Best to see a chart
- $0 \times 61=97=$ ' a '
- $0 \times 47=71=' \mathrm{G}$ '

Given an n-bit number in which d_{i} is the i th digit, the number is

$$
\sum_{i=1}^{n} 2^{i-1} d_{i}
$$

Overflow	

- If the result of an operation can't be represented in the available number of bits, an overflow occurs
- E.g., $0110+1011=10001$
- Need to detect overflow

Sequence?

	Unsigned Representations Signed Representations Building adders/subtracter Homework
Gray code	

- To convert from a standard binary number to a Gray code number XOR the number by it's half (right-shift it)
- To convert from a Gray code number to a standard binary number, XOR each binary digit with the parity of the higher digits
Given that a number contains n digits and each digit, d_{i}, contributes 2^{i-1} to the number

$$
\begin{aligned}
\mathcal{P}_{j}^{k} & =d_{j} \oplus d_{j+1} \cdots \oplus d_{k-1} \oplus d_{k} \\
d_{i} & =d_{i} \oplus \mathcal{P}_{i+1}^{n}
\end{aligned}
$$

- Converting from Gray code to standard binary is difficult
- Take time approximately proportional to n
- Doing standard arithmetic operations using Gray coded numbers is difficult
- Generally slower than using standard binary representation
- E.g., addition requires two carries
- Why use Gray coded numbers?
- Analog to digital conversion
- Reduced bus switching activity

- Four-bit machine word
- 16 values can be represented
- Approximately half are positive
- Approximately half are negative

- d_{n} represents sign
- 0 is positive, 1 is negative
- Two representations for zero
- What is the range for such numbers?
- Range: $\left[-2^{n-1}+1,2^{n-1}-1\right]$

- Consider $5+-6$
- Note that signs differ
- Use magnitude comparison to determine large magnitude: 6-5
- Subtract smaller magnitude from larger magnitude: 1
- Use sign of large magnitude number: -1
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Number systems } \\ \text { Unsigned Representations } \\ \text { Signed Reprentaios } \\ \text { Building adders/subtracter } \\ \text { Homework }\end{array}\end{array}\right)$

Consider subtracting 5 (0101) from 6 (0110)

$$
\begin{array}{r}
\\
\\
\\
0 \\
101 \\
-\quad 10 \\
- \\
\hline 0001
\end{array}
$$

- Note that this operation is different from addition
- Sign and magnitude addition is complicated

- If negative, complement all bits
- Addition somewhat simplified
- Do standard addition except wrap around carry back to the 0th bit
- Potentially requires two additions of the whole width
- Slow

- To negate a number, invert all its bits and add 1
- Like one's complement, however, rotated by one bit
- Counter-intuitive
- However, has some excellent properties

Consider adding -4 (1100) and 6 (0110)
11
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$
$\begin{array}{rrr}0 & 110 \\ +0010\end{array}$

| Number systems
 Unsigned Representations
 Signed Representions
 Buidding adderrs subtracter
 Homework |
| :--- | :--- |

- No looped carry - Only one addition necessary
- If carry-in to most-significant bit \neq carry-out to most-significant bit, overflow occurs
- What does this represent?
- Both operands positive and have carry-in to sign bit
- Both operands negative and don't have carry-in to sign bit

For two's complement, don't need subtracter

A	B	cout	sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\text { cout }=A B
$$

$$
\text { sum }=A \oplus B
$$

Need to deal with carry-in				
A	B	cin	cout	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

sum $=A \oplus B \oplus \operatorname{cin}$
cout $=A B+A c i+B c i$

Six logic gates

Full adder composed of half-adders

$A B+c i(A \oplus B)=A B+B c i+A c i$

- The critical path (to cout) is two gate delays per stage
- Consider adding two 32-bit numbers
- 64 gate delays
- Too slow!
- Consider faster alternatives

$$
\begin{aligned}
\text { sum } & =A \oplus B \oplus \operatorname{cin} \\
& =P \oplus \operatorname{cin}
\end{aligned}
$$

$$
\text { cout }=A B+A \operatorname{cin}+B \operatorname{cin}
$$

$$
=A B+\operatorname{cin}(A+B)
$$

$$
=A B+\operatorname{cin}(A \oplus B)
$$

$$
=G+\operatorname{cin} P
$$

R. Dick Introduction to Computer Engineering - EECS 203

Carry lookahead building block

Consider input to cin

- Lecture notes give detail for completeness
- However, primarily important to understand that carry lookahead compresses many levels of a carry chain into fewer levels for speed
- Will need to understand carry select adders in detail
- Carry generate: $G=A B$
- Carry propagate: $P=A \oplus B$
- Represent sum and cout in terms of G and P

Flatten carry equations

$$
\begin{aligned}
& \operatorname{cin}_{1}=G_{0}+P_{0} \text { cout }_{0} \\
& \operatorname{cin}_{2}=G_{1}+P_{1} \text { cout }_{1}=G_{1}+P_{1} G_{0}+P_{1} P_{0} \text { cout }_{0} \\
& \operatorname{cin}_{3}=G_{2}+P_{2} \text { cout }_{2}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} \text { cout }_{0} \\
& \operatorname{cin}_{4}=G_{3}+P_{3} C_{3}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+ \\
& \quad P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} \text { cout }_{0} \\
& \quad \text { Each cin can be implemented in three-level logic }
\end{aligned}
$$

| Number systems
 Unsigned Representations
 singed Reprentatios
 Buidding adders/subtrater
 Homework |
| :---: | :---: |

- Assume a 4 -stage adder with CLA
- Propagate and generate signals available after 1 gate delays
- Carry signals for slices 1 to 4 available after 3 gate delays
- Sum signal for slices 1 to 4 after 4 gate delays

- Trade even more hardware for faster carry propagation
- Break a ripple carry adder into two chunks, low and high
- Implement two high versions
- $\operatorname{hig} h_{0}$ computes the result if the carry-out from low is 0
- high $_{1}$ computes the result if the carry-out from low is 1
- Use a MUX to select a result once the carry-out of low is known
- higho's cout is never greater than high ${ }_{1}$'s cout so special-case MUX can be used

- Consider 8-bit adder divided into 4-bit stages
- Each 4-bit stage uses carry lookahead
- The 2:1 MUX adds two gate delays

Number systems

- Adders and subtracters
- Four-stage 16 -bit adder
- Depends on wiring, driven load
- 7 gate delays for carry lookahead
- 16 gate delays for ripple carry

- No carry chain slowing down computation of most-significant bit - Computation in parallel
- More area required
- Each bit has more complicated logic than the last
- Therefore, limited bit width for this type of adder
- Can chain multiple carry lookahead adders to do wide additions
- Note that even this chain can be accelerated with lookahead
- Use internal and external carry lookahead units

- cin for MSB available after five gate delays
- sum for MSB available after eight gate delays
- 16-bit ripple-carry adder takes 32 gate delays
- Note that not all gate delays are equivalent
- However, carry lookahead is usually much faster than ripple-carry

Reading assignment

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Finish Sections 5.1-5.6

