Introduction to Computer Engineering - EECS 203

 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/| Instructor: | Robert Dick | TA: | Neal Oza |
| :--- | :--- | :--- | :--- |
| Office: | L477 Tech | Office: | Tech. Inst. L375 |
| Email: | dickrp@northwestern.edu | Phone: | $847-467-0033$ |
| Phone: | 847-467-2298 | Email: | nealoza@u.northwestern.edu |
| | | | |
| | | TT: | David Bild |
| | | Office: | Tech. Inst. L470 |
| | | Phone: | 847-491-2083 |
| | | Email: | d-bild@northwestern.edu |

Outline

1. Number Systems

2. Homework

Introduction to number systems

Consider a base-10 number: 1,293

$$
1,293=1 \cdot 10^{3}+2 \cdot 10^{2}+9 \cdot 10^{1}+3 \cdot 10^{0}
$$

For base-10, given an n-digit number in which d_{i} is the ith digit, the number is

$$
\sum_{i=0}^{n} 10^{i-1} \cdot d_{i}
$$

Introduction to number systems

This works for any base. Convert $2,012_{3}$ from base- 3 to base-10.

$$
\begin{gathered}
2 \cdot 3^{3}+0 \cdot 3^{2}+1 \cdot 3^{1}+2 \cdot 3^{0} \\
2 \cdot 27+0 \cdot 9+1 \cdot 3+2 \cdot 1 \\
54+0+3+2 \\
59_{10}
\end{gathered}
$$

Introduction to number systems

Convert 59_{10} from base-10 to base-3. Repeatedly divide by the greatest power of b (the base) that is less than the number.

Remainder 59	Try dividing $3^{4}=81$	Digit	Comment
$59-0 \cdot 81=59$	$3^{3}=27$	2	Ooo big
$59-2 \cdot 27=5$	$3^{2}=9$	0	Too big
$5-0 \cdot 9=5$	$3^{1}=3$	1	O.K.
$5-1 \cdot 3=2$	3^{0}	2	O.K.

$$
02012_{3}=2012_{3}
$$

Conversion works for any base

Review: For base-10, given an n-digit number in which d_{i} is the i th digit, the number is

$$
\sum_{i=1}^{n} 10^{i-1} \cdot d_{i}
$$

For base- b, given an n-digit number in which d_{i} is the i th digit, the number is

$$
\sum_{i=1}^{n} \cdot b^{i-1} \cdot d_{i}
$$

Useful bases

- 2: Also called binary. Most fundamental base in digital logic. Know this like the back of your hand.
- 8: Also called octal. Sometimes used by programmers. Prefer base 16.
- 10: Also called decimal or Arabic.
- 16: Also called hexadecimal or simple hex. One of the most compact and beautiful representations for digital computer programmers.

Binary

$$
\begin{array}{ccccccccccc}
1 & 2 & 4 & 8 & 16 & 32 & 64 & 128 & 256 & 512 & 1,024(1 \mathrm{~K}) \\
2^{0} & 2^{1} & 2^{2} & 2^{3} & 2^{4} & 2^{5} & 2^{6} & 2^{7} & 2^{8} & 2^{9} & 2^{10} \\
& & & \\
& & \\
& & & 1 \mathrm{k} \neq \mathrm{K} & =10^{3}=1,000 \\
& & & & =2^{10}=1,024
\end{array}
$$

Decimal

- Most commonly used by human beings.
- Also called Arabic.
- Actually developed in India and brought to Europe via Arabian empire.
- Largely replaced Roman numerals, which were more cumbersome when writing the large and complicated numbers used in astronomy and wide-spread trade.

Number systems

- Representation of positive numbers same in most systems
- A few special-purpose alternatives exist, e.g., Gray code
- Alternatives exist for signed numbers

Base-16: Hex

$$
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { A } & \text { B } & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F}
\end{array}
$$

Often prefixed with $0 x$. What is $0 \times F F$?

Outline

1. Number Systems

2. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, third edition, 2004
- Sections 5.1-5.6

Computer geek culture reference

- Spelling things in ASCII (hex or binary)
- This is one of the lower forms of geek culture, akin to bad puns
- However, at least one university has things written into its buildings with subtle brick patterns in ASCII binary
$4 \mathrm{a} 6934207375616 e 34206 \mathrm{a} 6931207368653420$
$6 \mathrm{a} 69342068656 e 332068616 f 332077616 e 3221$

