Introduction to Computer Engineering - EECS 203

 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/| Instructor: | Robert Dick | TA: | Neal Oza |
| :--- | :--- | :--- | :--- |
| Office: | L477 Tech | Office: | Tech. Inst. L375 |
| Email: | dickrp@northwestern.edu | Phone: | $847-467-0033$ |
| Phone: | 847-467-2298 | Email: | nealoza@u.northwestern.edu |
| | | | |
| | | TT: | David Bild |
| | | Office: | Tech. Inst. L470 |
| | | Phone: | 847-491-2083 |
| | | Email: | d-bild@northwestern.edu |

Outline

1. Encoders
2. Decoders
3. Multiplexers
4. Homework

Encoders

- Assume you have n one-bit signals
- Only one signal can be 1 at a time
- How many states can you be in?
- How many signals are required to encode all those states?

Encoder example

Pressed $\left(i_{2}, i_{1}, i_{0}\right)$	Code $\left(o_{1}, o_{0}\right)$
000	00
001	01
010	10
011	XX
100	11
101	XX
110	XX
111	XX
Implementation?	

Priority encoder

What if we want the highest-order high signal to dominate?

Pressed $\left(i_{3}, i_{2}, i_{1}\right)$	Code $\left(o_{1}, o_{0}\right)$
000	00
001	01
010	10
011	10
100	11
101	11
110	11
111	11

What impact on implementation efficiency?

Outline

1. Encoders
2. Decoders
3. Multiplexers
4. Homework

Decoders

Need to map back from encoded signal to state

Pressed $\left(i_{1}, i_{0}\right)$	Code $\left(o_{3}, o_{2}, o_{1}, o_{0}\right)$
00	0001
01	0010
10	0100
11	1000

o_{0} isn't always used. Why?
Most straightforward implementation?

Straight-forward decoder implementation

Straight-forward decoder implementation

Straight-forward decoder implementation

Straight-forward decoder implementation

Decoder implementation efficiency

- n NOTs
- $n^{2} n$-input ANDS
- $\mathcal{O}\left(n^{2}\right)$
- Can't do this for large number of inputs!
- Instead, decompose into multi-level implementation

Multilevel decoder implementation

$$
\begin{aligned}
& \text { Starting point } \\
& o_{0}=\overline{i_{2}} \overline{i_{1}} \overline{i_{0}} \\
& o_{1}=\overline{i_{2}} \overline{i_{1}} i_{0} \\
& o_{2}=\overline{i_{2}} i_{1} \overline{i_{0}} \\
& o_{3}=\overline{i_{2}} i_{1} i_{0} \\
& o_{4}=i_{2} \overline{i_{1}} \overline{i_{0}} \\
& O_{5}=i_{2} \overline{i_{1}} i_{0} \\
& O_{6}=i_{2} i_{1} \overline{i_{0}} \\
& o_{7}=i_{2} i_{1} i_{0}
\end{aligned}
$$

Multilevel decoder implementation

$$
\begin{aligned}
& o_{0}=\overline{i_{2}}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{1}=\overline{i_{2}}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{2}=\overline{i_{2}}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{3}=\overline{i_{2}}\left(i_{1} i_{0}\right) \\
& o_{4}=i_{2}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{5}=i_{2}\left(\overline{i_{1}} i_{0}\right) \\
& o_{6}=i_{2}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& \left.o_{7}=\dot{i}_{1} \bar{x}^{2}\right)
\end{aligned}
$$

Multilevel decoder implementation

$$
\begin{aligned}
& o_{0}=\overline{i_{2}}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{1}=\overline{i_{2}}\left(\overline{i_{1}} i_{0}\right) \\
& o_{2}=\overline{i_{2}}\left(i_{1} i_{0}\right) \\
& o_{3}=\overline{i_{2}}\left(i_{1} i_{0}\right) \\
& o_{4}=i_{2}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{5}=i_{2}\left(\overline{i_{1}} i_{0}\right) \\
& o_{6}=i_{2}\left(i_{1} i_{0}\right) \\
& o_{7}=i_{2}\left(i_{1} i_{0}\right)
\end{aligned}
$$

Multilevel decoder implementation

$$
\begin{aligned}
& o_{0}=\overline{i_{2}}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& o_{1}=\overline{i_{2}}\left(\overline{i_{1}} i_{0}\right) \\
& o_{2}=\overline{i_{2}}\left(i_{1} i_{0}\right) \\
& o_{3}=\overline{i_{2}}\left(i_{1} i_{0}\right) \\
& o_{4}=i_{2}\left(\overline{i_{1}} \overline{i_{0}}\right) \\
& O_{5}=i_{2}\left(\overline{i_{1}} i_{0}\right) \\
& o_{6}=i_{2}\left(i_{1} i_{0}\right) \\
& o_{7}=i_{1}\left(i_{1} i_{0}\right)
\end{aligned}
$$

Reuse terms! Schematic?

Outline

1. Encoders
2. Decoders

3. Multiplexers

4. Homework

Multiplexers or selectors

- Routes one of 2^{n} inputs to one output
- n control lines
- Can implement with logic gates

Logic gate MUX

However, there is another way...

MUX functional table

$$
\begin{array}{c|c}
\mathrm{C} & \mathrm{Z} \\
\hline 0 & I_{0} \\
1 & I_{1}
\end{array}
$$

MUX truth table

I_{1}	I_{0}	C	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Encoders
Decoders
Multiplexers
Homework

Review: CMOS transmission gate (TG)

Review: Other TG diagram

MUX

MUX using TGs

Hierarchical MUX implementation

Alternative hierarchical MUX implementation

MUX examples

MUX examples

MUX examples

$$
\begin{gathered}
Z=\bar{A} \bar{B} \bar{C} I_{0}+\bar{A} \bar{B} C l_{1}+\bar{A} B \bar{C} I_{2}+\bar{A} B C I_{3}+ \\
A \bar{B} \bar{C} I_{4}+A \bar{B} C l_{5}+A B \bar{C} I_{6}+A B C I_{7}
\end{gathered}
$$

MUX properties

- A $2^{n}: 1$ MUX can implement any function of n variables
- A $2^{n-1}: 1$ can also be used
- Use remaining variable as an input to the MUX

MUX example

$$
\begin{aligned}
F(A, B, C) & =\sum(0,2,6,7) \\
& =\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+A B C
\end{aligned}
$$

Truth table

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Encoders
Decoders
Multiplexers
Homework
Lookup table implementation

MUX example

$$
\begin{aligned}
F(A, B, C) & =\sum(0,2,6,7) \\
& =\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+A B C
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \bar{A} \bar{B} \rightarrow F=\bar{C} \\
& \bar{A} B \rightarrow F=\bar{C} \\
& A \bar{B} \rightarrow F=0 \\
& A B \rightarrow F=1
\end{aligned}
$$

Truth table

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1
	$F=\bar{C}$		

Truth table

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1
	$F=\bar{C}$		

Lookup table implementation

Demultiplexer (DMUX) definitions

- Closely related to decoders
- n control signals
- Single data input can be routed to one of 2^{n} outputs

Recall decoders

Recall decoders

Recall decoders

Recall decoders

DMUXs similar to decoders

Use extra input to control output signal

Demultiplexer

Dangers when implementing with TGs

Dangers when implementing with TGs

What if an output is not connected to any input?

Encoders
Decoders
Homework

Review: Consider undriven inverter inputs

Encoders
Decoders
Homework
Review: Consider undriven inverter inputs

Encoders
Decoders
Homework
Review: Consider undriven inverter inputs

Encoders
Decoders
Homework
Review: Consider undriven inverter inputs

Encoders
Decoders

Review: Consider undriven inverter inputs

Encoders
Decoders
Homework
Review: Consider undriven inverter inputs

Set all outputs

Demultiplexers as building blocks

Generate midterm based on control signals

Example function

$$
\begin{aligned}
& F_{1}=\bar{A} \bar{B} C D+\bar{A} B \bar{C} D+A B C D \\
& F_{2}=A B \bar{C} \bar{D}+A B C=A B \bar{C} \bar{D}+A B C \bar{D}+A B C D \\
& F_{3}=\bar{A}+\bar{B}+\bar{C}+\bar{D}=\overline{A B C D}
\end{aligned}
$$

Demultiplexers as building blocks

Status

- CMOS
- Switch-based and gate-based design
- Two-level minimization
- Encoders
- Decoder
- Multiplexers
- Demultiplexers

Is anything still unclear? Then let's do some examples!

Lab three

- Requires error detection
- Read Section 1.4 in the book
- How to build an error injector, i.e., a conditional inverter?
- How to build a two-input parity gate?
- How to build a three-input parity gate from two-input parity gates?
- How to detect even number of ones?

Outline

1. Encoders
2. Decoders
3. Multiplexers
4. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Sections 1.2-1.7

Computer geek culture reference

- Cliff Stoll. The Cukoo's Egg. Bantam Doubleday Dell Publishing Group, 1989

