Introduction to Computer Engineering – EECS 203

http://ziyang.eecs.northwestern.edu/ \sim dickrp/eecs203/

Instructor: Robert Dick Office: L477 Tech

Email: dickrp@northwestern.edu

Phone: 847–467–2298

TA: Neal Oza

Office: Tech. Inst. L375 Phone: 847-467-0033

Email: nealoza@u.northwestern.edu

TT: David Bild

Office: Tech. Inst. L470 Phone: 847-491-2083

Email: d-bild@northwestern.edu

Outline

- 1. Encoders
- 2. Decoders
- 3. Multiplexers
- 4. Homework

Encoders

- Assume you have n one-bit signals.
- Only one signal can be 1 at a time
- How many states can you be in?
- How many signals are required to encode all those states?

Encoder example

Pressed (i_2, i_1, i_0)	$Code\;(o_1,o_0)$
000	00
001	01
010	10
011	XX
100	11
101	XX
110	XX
111	XX

Implementation?

Priority encoder

What if we want the highest-order high signal to dominate?

Pressed (i_3, i_2)	(i_1) Code (o_1,o_0)
000	00
001	01
010	10
011	10
100	11
101	11
110	11
111	11

What impact on implementation efficiency?

Outline

- 1. Encoders
- 2. Decoders
- 3. Multiplexers
- 4. Homework

Decoders

Need to map back from encoded signal to state

Pressed (i_1, i_0)	Code (o_3, o_2, o_1, o_0)
00	0001
01	0010
10	0100
11	1000

o₀ isn't always used. Why? Most straightforward implementation?

Decoder implementation efficiency

- n NOTs
- n^2 *n*-input ANDS
- $\circ \mathcal{O}(n^2)$
- Can't do this for large number of inputs!
- Instead, decompose into multi-level implementation

Starting point $o_0 = \overline{i_2} \, \overline{i_1} \, \overline{i_0}$ $o_1 = \overline{i_2} \, \overline{i_1} \, i_0$ $o_2 = \overline{i_2} i_1 \overline{i_0}$ $o_3 = \overline{i_2} i_1 i_0$ $o_4 = i_2 \overline{i_1} \overline{i_0}$ $o_5 = i_2 \overline{i_1} i_0$ $o_6 = i_2 i_1 \overline{i_0}$ $o_7 = i_2 i_1 i_0$

$$\begin{aligned}
 o_0 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_1 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_2 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_3 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_4 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_5 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_6 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right) \\
 o_7 &= \overline{i_2} \left(\overline{i_1} \, \overline{i_0} \right)
 \end{aligned}$$

$$\begin{aligned}
 o_0 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_1 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_2 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_3 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_4 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_5 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_6 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0}) \\
 o_7 &= \overline{i_2} \ (\overline{i_1} \ \overline{i_0})
 \end{aligned}$$

$$\begin{aligned}
 o_0 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_1 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_2 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_3 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_4 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_5 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_6 &= \overline{i_2} (\overline{i_1} \overline{i_0}) \\
 o_7 &= \overline{i_2} (\overline{i_1} \overline{i_0})
 \end{aligned}$$

Reuse terms! Schematic?

Outline

- 1. Encoders
- 2. Decoders
- 3. Multiplexers
- 4. Homework

Multiplexers or selectors

- Routes one of 2ⁿ inputs to one output
- n control lines
- Can implement with logic gates

Logic gate MUX

However, there is another way...

MUX functional table

MUX truth table

I_1	I_0	С	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Review: CMOS transmission gate (TG)

Review: Other TG diagram

MUX using TGs

20

Hierarchical MUX implementation

Alternative hierarchical MUX implementation

MUX examples

MUX examples

MUX examples

$$Z = \overline{A} \overline{B} \overline{C} I_0 + \overline{A} \overline{B} C I_1 + \overline{A} B \overline{C} I_2 + \overline{A} B C I_3 + A \overline{B} \overline{C} I_4 + A \overline{B} C I_5 + A \overline{B} \overline{C} I_6 + A B C I_7$$

MUX properties

- A 2^n : 1 MUX can implement any function of n variables
- A 2^{n-1} : 1 can also be used
 - Use remaining variable as an input to the MUX

MUX example

$$F(A, B, C) = \sum_{\alpha} (0, 2, 6, 7)$$

$$= \overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + AB \overline{C} + ABC$$

Truth table

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Lookup table implementation

MUX example

$$F(A, B, C) = \sum_{\overline{A}} (0, 2, 6, 7)$$
$$= \overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + AB \overline{C} + AB \overline{C}$$

Therefore,

$$\overline{A}\overline{B} \to F = \overline{C}$$
 $\overline{A}B \to F = \overline{C}$
 $A\overline{B} \to F = 0$
 $AB \to F = 1$

Truth table

$$F=\overline{C}$$

Truth table

$$F = \overline{C}$$

Lookup table implementation

Demultiplexer (DMUX) definitions

- Closely related to decoders
- n control signals
- Single data input can be routed to one of 2ⁿ outputs

DMUXs similar to decoders

Use extra input to control output signal

Dangers when implementing with TGs

Dangers when implementing with TGs

What if an output is not connected to any input?

Set all outputs

Demultiplexers as building blocks

Generate midterm based on control signals

Example function

$$F_{1} = \overline{A} \, \overline{B} \, CD + \overline{A} \, B \, \overline{C} \, D + ABCD$$

$$F_{2} = AB \, \overline{C} \, \overline{D} + ABC = AB \, \overline{C} \, \overline{D} + ABC \, \overline{D} + ABCD$$

$$F_{3} = \overline{A} + \overline{B} + \overline{C} + \overline{D} = \overline{ABCD}$$

Demultiplexers as building blocks

Status

44

- CMOS
- Switch-based and gate-based design
- Two-level minimization
- Encoders
- Decoder
- Multiplexers
- Demultiplexers

Is anything still unclear? Then let's do some examples!

Lab three

- Requires error detection
- Read Section 1.4 in the book
- How to build an error injector, i.e., a conditional inverter?
- How to build a two-input parity gate?
- How to build a three-input parity gate from two-input parity gates?
- How to detect even number of ones?

Outline

- 1. Encoders
- 2. Decoders
- 3. Multiplexers
- 4. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. *Logic and Computer Design Fundamentals*. Prentice-Hall, NJ, fourth edition, 2008
- Sections 1.2–1.7

Computer geek culture reference

 Cliff Stoll. The Cukoo's Egg. Bantam Doubleday Dell Publishing Group, 1989