Introduction to Computer Engineering – EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Instructor:	Robert Dick
Office:	L477 Tech
Email:	dickrp@northwestern.edu
Phone:	847–467–2298

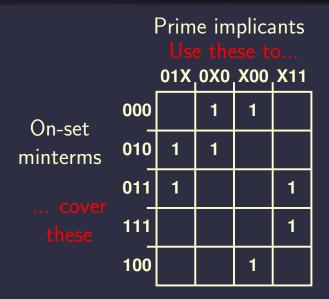
TA:	Neal Oza
Office:	Tech. Inst. L375
Phone:	847-467-0033
Email:	nealoza@u.northwestern.edu
TT:	David Bild
Office:	Tech. Inst. L470
Phone:	847-491-2083

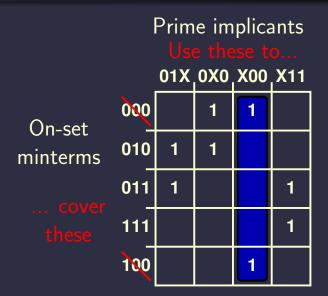
Email: d-bild@northwestern.edu

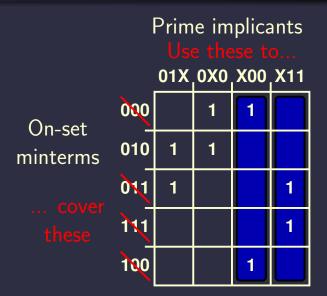
NORTHWESTERN UNIVERSITY

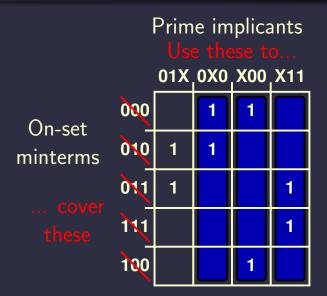
Outline

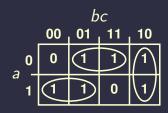
- 1. Unate covering within the Quine-McCluskey method
- 2. Homework

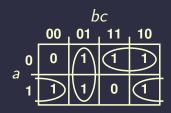

Review: Quine-McCluskey two-level logic minimization

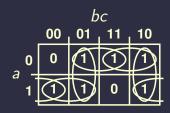

- Compute prime implicants with a well-defined algorithm
 - Start from minterms
 - Merge adjacent implicants until further merging impossible
- Select minimal cover from prime implicants
 - Unate covering problem
- What is happening?
 - $ab + a\overline{b} = a$

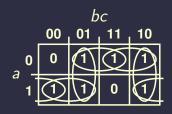

Definition: Unate covering

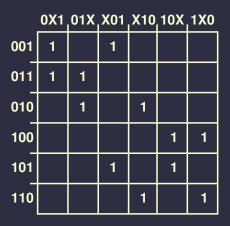

Given a matrix for which all entries are 0 or 1, find the minimum cardinality subset of columns such that, for every row, at least one column in the subset contains a 1.

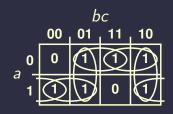

I'll give an example

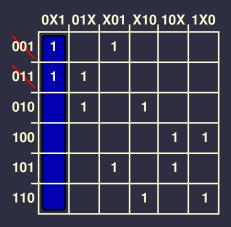


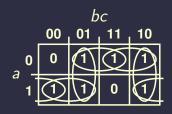


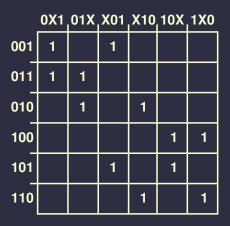


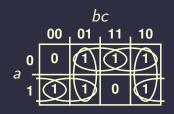


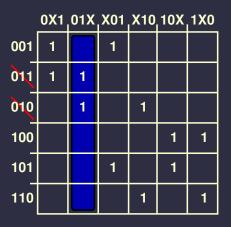


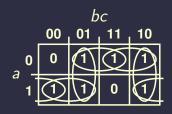


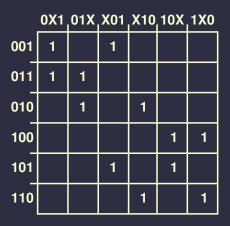






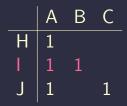


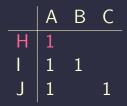




Implicant selection reduction

- Eliminate rows covered by essential columns
- Eliminate rows dominated by other rows
- Eliminate columns dominated by other columns





Eliminate columns dominated by other columns,

Eliminate columns dominated by other columns,

Eliminate columns dominated by other columns

Eliminate columns dominated by other columns,

Backtracking

- Will proceed to complete solution unless cyclic
- If cyclic, backtrack
 - Try all possible options to completion
- Advanced topic: Can use a number of tricks to simplify this

Use bound to constrain search space

- Eliminate rows covered by essential columns
- Eliminate rows dominated by other rows
- Eliminate columns dominated by other columns
- Speed improved, still $\in \mathcal{NP}\text{-complete}$
 - Too slow to solve for large problem instances

Loose end – Don't cares

- What should be done about Xs in QM?
- Should they be included in the initial minterms?
- Should they be required in the Unate Covering problem?

Another example

$f(a, b, c) = \sum (1, 2, 6) + d(3)$

Summary

- Review
- Prime implicant selection in Quine-McCluskey
- Encoders and decoders
- Review: Transmission gates
- Multiplexers and demultiplexers

Outline

- 1. Unate covering within the Quine-McCluskey method
- 2. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. *Logic and Computer Design Fundamentals.* Prentice-Hall, NJ, fourth edition, 2008
- Rest of Section 4.6

Computer geek culture reference

- Complexity classes
- Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Company, NY, 1979