Introduction to Computer Engineering – EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Instructor:	Robert Dick
Office:	L477 Tech
Email:	dickrp@northwestern.edu
Phone:	847-467-2298

TA:	Neal Oza
Office:	Tech. Inst. L375
Phone:	847-467-0033
Email:	nealoza@u.northwestern.edu
TT:	David Bild
Office:	Tech. Inst. L470

847-491-2083 Email: d-bild@northwestern.edu

Phone[.]

NORTHWESTERN UNIVERSITY

Outline

- 1. Transmission gates
- 2. Two-level logic
- 3. Kmaps
- 4. Homework

Other TG diagram

Transmission gates Two-level logic

wo-level logic Kmaps Homework

TG example

 $\left(\right)$

1

Impact of control on input

 $\left(\right)$

$= \underbrace{\qquad}_{\text{TG's resistance}}^{\text{WV-}}$

Impact of control on input

Impact of control on input

6

Outline

- 1. Transmission gates
- 2. Two-level logic
- 3. Kmaps
- 4. Homework

Practice w/ Boolean Minimization

Simplify this expression so that it has the minimal possible literal count:

$$(a+\overline{b})\overline{(\overline{a}\,b+cd)}$$

Two-Level Logic and Canonical Forms

- The previous example illustrated one standard representation (product of sums).
- These standard forms are known collectively as two-level logic:
 - Product of Sums (POS) e.g.

$$f = (a + \overline{b})(\overline{a} + b)$$

• Sum of Products (SOP) e.g.

$$f = \overline{a} \, \overline{b} + ab$$

- Can you see why these two are equivalent?
- Why is this known as two-level logic?

Canonical forms - SOP

For Sum of Products (SOP) the canonical form is constructed out of *minterms*.

- Product term in which all variables appear in complemented or uncomplemented forms once
- For an n-input function corresponds to one of of 2ⁿ possible input combinations
- Use binary representation to enumerate minterms

Canonical forms – SOP

Х	У	z	term	symbol	m_0	m_1	<i>m</i> ₂	<i>m</i> 3	m_4	m_5	<i>m</i> 6	<i>m</i> 7
0	0	0	$\overline{x}\overline{y}\overline{z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{x}\overline{y}z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{x} y\overline{z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{x} yz$	<i>m</i> 3	0	0	0	1	0	0	0	0
1	0	0	$x\overline{y}\overline{z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	xy z	m_5	0	0	0	0	0	1	0	0
1	1	0	ху Z	m_6	0	0	0	0	0	0	1	0
1	1	1	xyz	<i>m</i> 7	0	0	0	0	0	0	0	1

Using Canonical Sum of Products Representation

Convenient representation uses \sum operator and minterms: $f(x_1, \ldots, x_n) = \sum m_i$

For given function f, list all minterms for which the function is true:

Using Canonical Sum of Products Representation

Convenient representation uses \sum operator and minterms: $f(x_1, \ldots, x_n) = \sum m_i$

For given function f, list all minterms for which the function is true: $f(a, b, c) = ab + \overline{a} \overline{c}$

Using Canonical Sum of Products Representation

Convenient representation uses \sum operator and minterms: $f(x_1, \ldots, x_n) = \sum m_i$

For given function f, list all minterms for which the function is true: $f(a, b, c) = ab + \overline{a} \overline{c}$ $= (m_6 + m_7) + (m_0 + m_2)$

Using Canonical Sum of Products Representation

Convenient representation uses \sum operator and minterms: $f(x_1, \ldots, x_n) = \sum m_i$

For given function f, list all minterms for which the function is true: $f(a, b, c) = ab + \overline{a} \overline{c}$ $= (m_6 + m_7) + (m_0 + m_2)$ $= \sum m(0, 2, 6, 7)$

Canonical forms - POS

For Products of Sums (POS) the canonical form is constructed out of *maxterms*.

- Sum term in which all variables appear in complemented or uncomplemented forms once
- Use binary representation to enumerate maxterms (note: function is not true for maxterms)

Canonical forms – POS

Х	у	Z	term	symbol	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7
0	0	0	x + y + z	M_0	0	1	1	1	1	1	1	1
0	0	1	$x + y + \overline{z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$x + \overline{y} + z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$x + \overline{y} + \overline{z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{x} + y + z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{x} + y + \overline{z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{x} + \overline{y} + z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{x} + \overline{y} + \overline{z}$	M_7	1	1	1	1	1	1	1	0

Using Canonical Products of Sums Representation

Convenient representation uses \prod operator and minterms: $f(x_1,\ldots,x_n) = \prod M_i$

For given function f, list all maxterms for which the function is false:

Using Canonical Products of Sums Representation

Convenient representation uses \prod operator and minterms: $f(x_1,\ldots,x_n) = \prod M_i$

For given function f, list all maxterms for which the function is false: $f(a, b, c) = (a + \overline{c}) (\overline{a} + b)$

Using Canonical Products of Sums Representation

Convenient representation uses \prod operator and minterms: $f(x_1,\ldots,x_n) = \prod M_i$

For given function f, list all maxterms for which the function is false: $f(a, b, c) = (a + \overline{c}) (\overline{a} + b)$ $= M_1 \cdot M_3 \cdot M_4 \cdot M_5$

Using Canonical Products of Sums Representation

Convenient representation uses \prod operator and minterms: $f(x_1,\ldots,x_n) = \prod M_i$

For given function f, list all maxterms for which the function is false: $f(a, b, c) = (a + \overline{c}) (\overline{a} + b)$ $= M_1 \cdot M_3 \cdot M_4 \cdot M_5$ $= \prod M (1, 3, 4, 5)$

More examples of two-level logic

$$f(a, b, c, d) = \sum m(1, 4, 8, 10, 13, 15)$$

$$f(w, x, y, z) = \prod M(5, 13, 14)$$

 $f(u, v) = u + \overline{u} \overline{v}$

Logic minimization motivation

- Want to reduce area, power consumption, delay of circuits
- Hard to exactly predict circuit area from equations
- Can approximate area with SOP cubes
- Minimize number of cubes and literals in each cube
- Algebraic simplification difficult
 - Hard to guarantee optimality

Logic minimization motivation

- K-maps work well for small problems
 - Too error-prone for large problems
 - Don't ensure optimal prime implicant selection
- Quine-McCluskey optimal and can be run by a computer
 - Too slow on large problems
- Some advanced heuristics usually get good results fast on large problems
- Want to learn how these work and how to use them?
- Take Advanced Digital Logic Design

Boolean function minimization

- Algebraic simplification
 - Not systematic
 - · How do you know when optimal solution has been reached?
- Optimal algorithm, e.g., Quine-McCluskey
 - Only fast enough for small problems
 - Understanding these is foundation for understanding more advanced methods
- Not necessarily optimal heuristics
 - Fast enough to handle large problems

Outline

- 1. Transmission gates
- 2. Two-level logic
- 3. Kmaps
- 4. Homework

Karnaugh maps (K-maps)

- Fundamental attribute is adjacency
- Useful for logic synthesis
- Helps logic function visualization
- General Idea: Circle groups of output values (typically 1's)
- · Result: Circled terms correspond to minimized product terms
Karnaugh maps

Karnaugh maps

Karnaugh maps

10

Sum of products (SOP) - Truth table

а	b	f	
0	0	1	
0	1	0	
1	0	0	
1	1	1	
$f = (\bar{a})$	$\overline{a}\overline{b}$	+ (ab)

Sum of products (SOP) - KMap

Equivalent way of expressing the same function:

24

Sum of products (SOP) - KMap

Equivalent way of expressing the same function:

Sum of products (SOP) - KMap

Equivalent way of expressing the same function:

Some definitions

Some definitions

• *implicant* - a product term (or sum term) which covers/includes one or more minterms (or maxterms)

Some definitions

- *implicant* a product term (or sum term) which covers/includes one or more minterms (or maxterms)
- prime implicant implicant that cannot be covered by a more general implicant (i.e. one with fewer literals)

Some definitions

- *implicant* a product term (or sum term) which covers/includes one or more minterms (or maxterms)
- *prime implicant* implicant that cannot be covered by a more general implicant (i.e. one with fewer literals)
- essential prime implicants cover an output of the function that no other prime implicant (or sum thereof) is able to cover

Implicants

Implicants

Implicants

Implicants

For now, treat \times as a "wildcard"

prime implicant

Implicants

For now, treat \times as a "wildcard"

essential prime implicant

Prime implicants are not covered by other implicants

R. Dick Introduction to Computer Engineering - EECS 203

Implicants

For now, treat \times as a "wildcard"

Essential prime implicants uniquely cover minterms

Implicants

K-map example

• Minimize $f(a, b, c, d) = \sum (1, 3, 8, 9, 10, 11, 13)$

K-map example

• Minimize $f(a, b, c, d) = \sum (1, 3, 8, 9, 10, 11, 13)$

• f(a, b, c, d) =
$$a\overline{b} + \overline{b}d + a\overline{c}d$$

K-map simplification technique

For all minterms

- Find maximal groupings of 1's and X's adjacent to that minterm.
- Remember to consider top/bottom row, left/right column, and corner adjacencies.
- These are the prime implicants.

K-map simplification technique

- Revisit the 1's elements in the K-map.
- If covered by single prime implicant, the prime is essential, and participates in final cover.
- The 1's it covers do not need to be revisited.

K-map simplification technique

- If there remain 1's not covered by essential prime implicants,
- Then select the smallest number of prime implicants that cover the remaining 1's.
- This can be difficult for complicated functions.
- Will present an algorithm for this in a future lecture.

Product of sums (POS)

$$(\overline{a} + b)$$

Product of sums (POS)

$$(a+\overline{b})$$

Product of sums (POS)

 $(\overline{a} + b) \quad (a + \overline{b})$

Product of sums (POS)

 $(\overline{a} + b) \cdot (a + \overline{b})$

POS K-map techniques

• Direct reading by covering zeros and inverting variables

Or

- Invert function
- Do SOP
- Invert again
- Apply De Morgan's laws

POS K-map example

• Minimize $f(a, b, c) = \prod (2, 4, 5, 6)$

POS K-map example

- Minimize $f(a, b, c) = \prod (2, 4, 5, 6)$
- $f(a, b, c) = (\overline{b} + c)(\overline{a} + b)$

SOP from Karnaugh map

SOP from Karnaugh map

SOP from Karnaugh map

 $\overline{b} \overline{d}$

SOP from Karnaugh map

SOP from Karnaugh map

abd

SOP from Karnaugh map

SOP from Karnaugh map

a<u></u>c d

34

SOP from Karnaugh map

abc

SOP from Karnaugh map

 $ac\overline{d}$

SOP from Karnaugh map

$\overline{b}\overline{c} + \overline{b}\overline{d} + a\overline{c}d + abc$

Six-variable K-map example

$z(a, b, c, d, e, f) = \sum (2, 8, 10, 18, 24, 26, 34, 37, 42, 45, 50, 53, 58, 61)$

R. Dick

Six-variable K-map example

Introduction to Computer Engineering - EECS 203

36

Six-variable K-map example

$z(a, b, c, d, e, f) = \overline{d} e \overline{f} + a d \overline{e} f + \overline{a} C \overline{d} \overline{f}$

DON'T CARE logic

- All specified Boolean values are 0 or 1
- · However, during design some values may be unspecified
 - Don't care values (×)
- ×s allow circuit optimization, i.e.,
 - Incompletely specified functions allow optimization

DON'T CARE values

DON'T CARE values

Can let the undefined values be zero

- Correct...however, complicated
- $(\overline{a}\,\overline{b}) + (ab)$

DON'T CARE values

Can let the undefined values be zero

- Correct...however, complicated
- $(\overline{a}\,\overline{b}) + (ab)$

DON'T CARE values

Instead, leave these values undefined (\times)

- Also called DON'T CARE values
- Allows any function implementing the specified values to be used
- E.g., could use $(\overline{a} \, \overline{b}) + (ab)$

DON'T CARE values

Satisfiability DON'T CARES

- Input can never occur
- This can happen within a circuit
- Some modules will not be capable of producing certain outputs

Observability DON'T CARES

Output will be ignored for certain inputs

Observability DON'T CARES

Output will be ignored for certain inputs

Observability DON'T CARES

Output will be ignored for certain inputs

41

Observability DON'T CARES

Output will be ignored for certain inputs

Observability DON'T CARES

Output will be ignored for certain inputs

Don't care K-map example

• Minimize $f(w, x, y, z) = \sum (1, 3, 8, 9, 10, 11, 13) + d(5, 7, 15)$

Don't care K-map example

- Minimize $f(w, x, y, z) = \sum (1, 3, 8, 9, 10, 11, 13) + d(5, 7, 15)$
- $f(w, x, y, z) = w\overline{x} + z$

Two-level logic is necessary

Two-level logic is sufficient

- All Boolean functions can be represented with two logic levels
- Given k variables, 2^{K} minterm functions exist
- Select arbitrary union of minterms

Two-level well-understood

- As we will see later, optimal minimization techniques known for two-level
- However, optimal two-level solution may not be optimal solution
 - Sometimes a suboptimal solution to the right problem is better than the optimal solution to the wrong problem

Two-level sometimes impractical

Two-level sometimes impractical

Consider a 4-term XOR (parity) gate: $a \oplus b \oplus c \oplus d$ $(\overline{a} \overline{b} \overline{c} d) + (\overline{a} \overline{b} c \overline{d}) + (\overline{a} b \overline{c} \overline{d}) + (\overline{a} b c d) + (a b \overline{c} d) + (a b \overline{c} d) + (a b \overline{c} \overline{d}) + (a \overline{b} c \overline{d})$

Two-level weakness

- Two-level representation is exponential
- However, it's a simple concept
 - Is $\sum_{i=1}^{n} x_i$ odd?
- Problem with representation, not function
Transmission gates Two-level logic Kmaps Homework

Two-level weakness

Two-level representations also have other weaknesses

- Conversion from SOP to POS is difficult
 - Inverting functions is difficult
 - --ing two SOPs or +-ing two POSs is difficult
- Neither general POS or SOP are canonical
 - Equivalence checking difficult
- POS satisfiability $\in \mathcal{NP}$ -complete

Fransmission gates Two-level logic Kmaps Homework

Outline

- 1. Transmission gates
- 2. Two-level logic
- 3. Kmaps
- 4. Homework

Transmission gates Two-level logic Kmaps Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. *Logic and Computer* Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Section 2.6
- Also read TTL reference, Don Lancaster. *TTL Cookbook*. Howard W. Sams & Co., Inc., 1974, as needed