Introduction to Computer Engineering - EECS 203

 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/| Instructor: | Robert Dick | TA: | Neal Oza |
| :--- | :--- | :--- | :--- |
| Office: | L477 Tech | Office: | Tech. Inst. L375 |
| Email: | dickrp@northwestern.edu | Phone: | $847-467-0033$ |
| Phone: | 847-467-2298 | Email: | nealoza@u.northwestern.edu |
| | | | |
| | | TT: | David Bild |
| | | Office: | Tech. Inst. L470 |
| | | Phone: | 847-491-2083 |
| | | Email: | d-bild@northwestern.edu |

Outline

1. Quiz (ungraded)
2. Boolean algebra
3. Homework

Quiz (ungraded)

- What is the relationship between a truth table and a Boolean formula? Is it one/many-to-one/many?
- What is the relationship between a Boolean formula and a combinational circuit? Is it one/many-to-one/many?
- What quirks does the CMOS implementation technology have?
- What is signal restoration or voltage regeneration?
- What practices are unsafe in switch-based design? Why?

Outline

1. Quiz (ungraded)
2. Boolean algebra
3. Homework

Boolean algebra

- Set of elements, B
- Binary operators, $\left\{\left[\mathrm{AND}, \wedge,{ }^{*}, \cdot\right],[\mathrm{OR}, \vee,+]\right\}$
- We'll prefer . and +
- . frequently omitted
- Unary operator, [NOT, ', \bar{o}]

Axioms of Boolean algebra

$$
\exists x, y \in B \text { s.t. } x \neq y
$$

closure

$$
\forall x, y \in B
$$

$x y \in B$

$$
x+y \in B
$$

commutative laws $\forall x, y \in B$
$x y=y x$
$x+y=y+x$
identities
$0,1 \in B, \forall x \in B$
$x 1=x$
$x+0=x$

Axioms of Boolean algebra

$$
\exists x, y \in B \text { s.t. } x \neq y
$$

distributive laws $\forall x, y, z \in B \quad x+(y z)=(x+y)(x+z)$

$$
x(y+z)=x y+x z
$$

complement $\quad x \in B$

$$
x \bar{x}=0
$$

$$
x+\bar{x}=1
$$

De Morgan's laws

$$
\begin{aligned}
\overline{(a+b)} & =\bar{a} \bar{b} \\
\overline{a b} & =\bar{a}+\bar{b} \\
\overline{f\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot,+\right)} & =f\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}},+, \cdot\right)
\end{aligned}
$$

- Those xs could be functions
- Apply in stages
- Top-down

De Morgan's laws example

$$
\begin{array}{r}
\overline{a+b c} \\
\bar{a} \cdot \overline{(b c)} \\
\bar{a} \cdot(\bar{b}+\bar{c})
\end{array}
$$

Representations of Boolean functions

- Truth table
- Expression using only •, +, and '
- Symbolic
- Karnaugh map
- More useful as visualization and optimization tool

Review: AND

a	b	$\mathrm{a} b$
0	0	0
0	1	0
1	0	0
1	1	1

a $A N D \mathrm{~b}=\mathrm{a} \mathrm{b}$
Will show Karnaugh map later

Review: OR

a	b	$a+b$
0	0	0
0	1	1
1	0	1
1	1	1

a $O R \mathrm{~b}=\mathrm{a}+\mathrm{b}$

Review: NOT

a	\bar{a}
0	1
1	0

$a->-\frac{a}{a}$

$$
\text { NOT } \mathrm{a}=\overline{\mathrm{a}}
$$

Different representations possible

$$
Z=((C+D) \bar{B}) \bar{A}
$$

$$
Z=(C+D) \bar{A} \bar{B}
$$

Simplifying logic functions

- Minimize literal count (related to gate count, delay)
- Minimize gate count
- Minimize levels (delay)
- Trade off delay for area
- Sometimes no real cost

Proving theorems $=$ simplification

$$
\text { Prove } X Y+X \bar{Y}=X
$$

$$
\begin{aligned}
X Y+X \bar{Y} & =X(Y+\bar{Y}) \\
X(Y+\bar{Y}) & =X(1) \\
X(1) & =X
\end{aligned}
$$

distributive law complementary law identity law

Proving theorems $=$ simplification

Prove $X+X Y=X$

$$
\begin{aligned}
X+X Y & =X 1+X Y \\
X 1+X Y & =X(1+Y) \\
X(1+Y) & =X 1 \\
X 1 & =X
\end{aligned}
$$

identity law distributive law identity law
identity law

Literals

- Each appearance of a variable (complement) in expression
- Fewer literals usually implies simpler to implement
- E.g., $Z=A \bar{B} C+\bar{A} B+\bar{A} B \bar{C}+\bar{B} C$
- Three variables, ten literals

NANDs and NORs

- Can be implemented in CMOS
- More on this later
- X NAND $Y=\overline{X Y}$
- X NOR $Y=\overline{X+Y}$
- Do we need inverters?

Summary

- Administrative details
- Finished CMOS and basic gates
- Boolean algebra

Outline

1. Quiz (ungraded)
2. Boolean algebra
3. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Sections 2.4 and 2.5

Next lectures

- Karnaugh maps
- Visual minimization
- We'll also learn the optimal Quine-McCluskey method
- Optimal two-level minimization is fun!

