
Introduction to Computer Engineering – EECS 203
http://ziyang.eecs.northwestern.edu/∼dickrp/eecs203/

Instructor: Robert Dick
Office: L477 Tech
Email: dickrp@northwestern.edu
Phone: 847–467–2298

TA: Neal Oza
Office: Tech. Inst. L375
Phone: 847-467-0033
Email: nealoza@u.northwestern.edu

TT: David Bild
Office: Tech. Inst. L470
Phone: 847-491-2083
Email: d-bild@northwestern.edu

http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/


Instruction processors
Homework

Outline

1. Instruction processors

2. Homework

2 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Change in style

Micro-controller based design

In this lecture, I want a lot of help and participation

You now have the fundamental knowledge to design a processor

Let’s build a simple one on paper

You’ll be programming a slightly more complex processor in next
week’s lab assignment

3 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

RSE processor

Already understand building FSMs

Can use array of latches to store multiple bits: register

Consider simple processor, called RSE (Rob’s simplified example)

4 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

RSE registers

All registers are 8-bit

Four general-purpose registers, A, B, C , and D

Used to do computation

Program counter PC

Stack pointer SP (sometimes called TOS for top of stack),
which may also be used as a general-purpose register

ALU capable of adding (0) and subtracting (1)

5 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

RSE arithmetic instructions

add RD , RS1, RS2

sub RD , RS1, RS2

Do computation on source registers and put result in destination
register

6 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

RSE data motion

ldm RD , [RS ]

Load from memory location indicated by the source register into
destination register

stm [RD ], RS

Store to memory location indicated by the destination register
from source register

ldi RD , I

Load immediate into destination register

ldpc RS

Load from program counter to destination register

7 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Branch instructions

blz RT , RC

Set PC to RT if RC < 0

bz RT , RC

Set PC to RT if RC = 0

8 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Architecture

Inc

Instruction

fetch

A MUX

MUX

NPC

<0 0MUX

Instruction decode &

register fetch

Write

back

SP

PC

Memory
..

.

ALU

DMUX

Execute

I Decoder

MUX

What
about memory writes? Immediates?9 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Instruction encoding

How many instructions?

Worst-case operands?

3 registers (each how many bits?)
1 register and 1 immediate
To pack or not to pack?

10 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Initialization

Chip has reset line

Set PC to byte 2

Start running. . .

11 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Memory

Acts like a collection of byte-wide registers

Address using a decoder

Can put other devices at some memory locations

Memory-mapped input-output

Can also use special-purpose output instructions or registers

Let’s build some from D flip-flops

Multiplexing address and data lines?

12 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Program counter

Every clock tick the processor

Fetches an instruction from the memory location pointed to by
PC

Decodes the instruction

Fetches the operands

Executes the instruction

Stores the results

Increments the program counter

Can jump to another code location by moving a value into the
PC

13 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Example high-level code

Sum up the contents of memory locations 2-6

1 A = 0

2 For B from 2 to 6

3 A = A + [B]

14 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Example low-level code

Sum up the contents of memory locations 2–6

2. A = 0 ldi A, 0 or sub A, A, A
4. B = 2 ldi B, 2
6. C = [B] (loop start point) ldm C , [B]
8. A = A + C add A, A, C
10. B = B + 1 ldi C , 1 — add B, B, C
14. C = 6 (loop start) ldi C , 6
16. If B ≤ 6 (B < 7) branch to C ldi D, 7 — sub D, B, D — blz C ,
D
(Done)

15 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Error conditions

What happens on overflow or underflow?

Special register?

Special value associated with each register?

Single-instruction compare and branch?

Advantages and disadvantages of each?

16 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Assemble to our encodings

After assembling, can put program contents into memory,
starting at byte 2

Compiling from higher-level languages also possible

17 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Example high-level code

Sum up the contents of memory locations 2-6

1 i = 0

2 For j from 2 to 6

3 i = i + [j ]

18 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Lesson

With only a few registers and instructions, powerful actions are
possible

Less time and power efficient than special-purpose hardware
design

Instruction processors are flexible

Allows massive use of a single type of IC

Assembly is painful

However, much better than doing hardware design

Compilation also possible

19 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Today’s topics

Architecture

Assembly

Compilation

PIC16C74A

20 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Outline

1. Instruction processors

2. Homework

21 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Assigned reading

M. Morris Mano and Charles R. Kime. Logic and Computer
Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008

Refer to Chapter 7 and 8

Read Sections 9.1–9.7, 10.1–10.6, 10.8

22 R. Dick Introduction to Computer Engineering – EECS 203



Instruction processors
Homework

Computer geek culture references

Building multicontroller-based devices for the fun of it

http://www.bdmicro.com

http://www.commlinx.com.au/microcontroller.htm

http://members.home.nl/bzijlstra/

http://www.robotcafe.com/dir/Companies/Hobby/more3.shtml

Etc.

23 R. Dick Introduction to Computer Engineering – EECS 203


	Instruction processors
	Homework

