Introduction to Computer Engineering – EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Instructor:	Robert Dick
Office:	L477 Tech
Email:	dickrp@northwestern.edu
Phone:	847–467–2298

TA:	Neal Oza
Office:	Tech. Inst. L375
Phone:	847-467-0033
Email:	nealoza@u.northwestern.edu
TT:	David Bild
Office:	Tech. Inst. L470
Phone:	847-491-2083

Email: d-bild@northwestern.edu

NORTHWESTERN UNIVERSITY

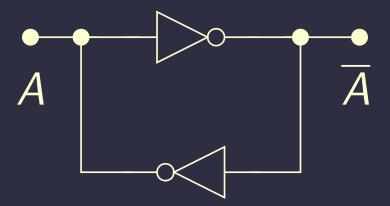
Outline

1. Memory

2. Latches

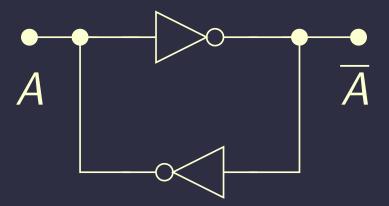
3. Clocks

4. Homework


Memory

- Combinational logic outputs a function of inputs, only
- Sequential logic outputs a function of inputs and state
- State is remembered
- Consider a sequential vending machine

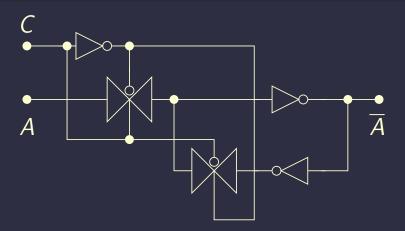
Flip-flop introduction


- Stores, and outputs, a value
- Puts a special clock signal in charge of timing
- Allows output to change in response to clock transition
- More on this later
 - Timing and sequential circuits

Feedback and memory

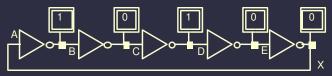
- Feedback is the root of memory
- Can compose a simple loop from NOT gates

Feedback and memory

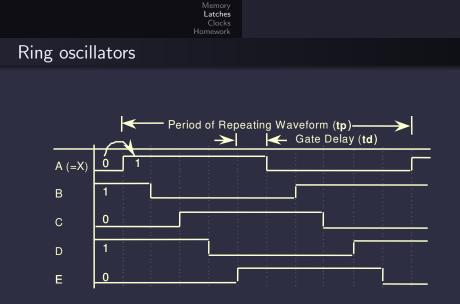

- Feedback is the root of memory
- Can compose a simple loop from NOT gates
- However, there is no way to switch the value

Memory Latches	
Clocks Homework	

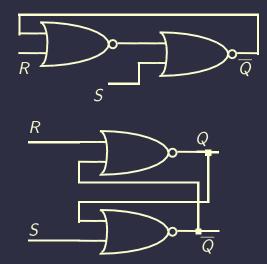
Outline

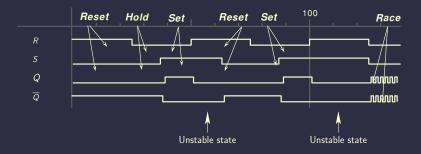

- 1. Memory
- 2. Latches
- 3. Clocks
- 4. Homework

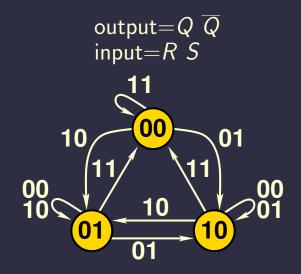
TG and NOT-based memory



- Can break feedback path to load new value
- However, potential for timing problems

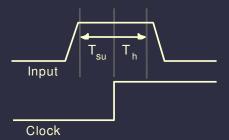

Ring oscillators


Like pulse shaping circuits with memory


Reset/set latch

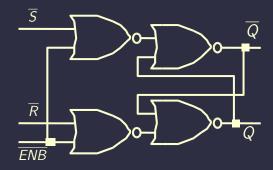
Reset/set timing

RS latch state diagram

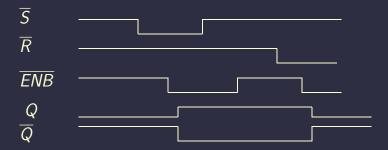


Outline

- 1. Memory
- 2. Latches
- 3. Clocks
- 4. Homework



Clocking terms



- · Clock Rising edge, falling edge, high level, low level, period
- Setup time: Minimum time before clocking event by which input must be stable (T_{SU})
- Hold time: Minimum time after clocking event for which input must remain stable (T_H)
- Window: From setup time to hold time

Gated RS latch

Gated RS latch

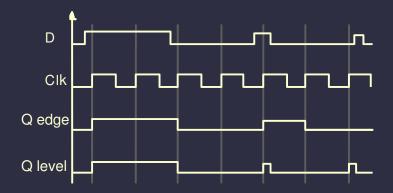
Memory element properties

Туре	Inputs sampled	Outputs valid
Unclocked latch	Always	LFT
Level-sensitive latch	Clock high $(T_{SU} \text{ to } T_H)$ around falling clock edge	LFT
Edge-triggered flip-flop	Clock low-to-high transition $(T_{SU} \text{ to } T_H)$ around rising clock edge	Delay from rising edge

Clocking conventions

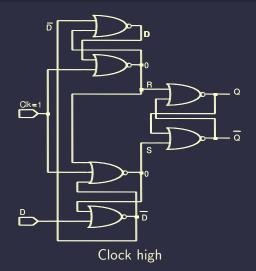
Active-high transparent

Active-low transparent



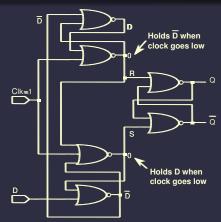
Positive (rising) edge

R. Dick


Timing for edge and level-sensitive latches

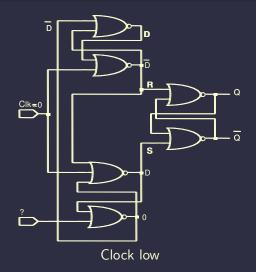
Falling edge-triggered D flip-flop

- Use two stages of latches
- When clock is high
 - First stage samples input w.o. changing second stage
 - Second stage holds value
- When clock goes low
 - First stage holds value and sets or resets second stage
 - Second stage transmits first stage
- $Q^+ = D$
- One of the most commonly used flip-flops


Falling edge-triggered D flip-flop

21

Memory Latches Clocks


Falling edge-triggered D flip-flop

Clock switching Inputs sampled on falling edge, outputs change after falling edge

ck Introduction to Computer Engineering – EECS 203

Falling edge-triggered D flip-flop

Summary

- Memory
- Latches
- Flip-flops (more on these later)

Outline

- 1. Memory
- 2. Latches
- 3. Clocks
- 4. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. *Logic and Computer Design Fundamentals.* Prentice-Hall, NJ, fourth edition, 2008
- Sections 5.1–5.7
- Sections 6.1–6.4

Computer geek culture reference

Computer security

- PGP
- (Open)SSH
- (Type II) remailers
- Wireshark
- Crack