Introduction to Computer Engineering – EECS 203 http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Instructor:	Robert Dick
Office:	L477 Tech
Email:	dickrp@northwestern.edu
Phone:	847-467-2298

TA:	Neal Oza
Office:	Tech. Inst. L375
Phone:	847-467-0033
Email:	nealoza@u.northwestern.edu
TT:	David Bild
Office:	Tech. Inst. L470

847-491-2083 Email: d-bild@northwestern.edu

Phone[.]

NORTHWESTERN UNIVERSITY

Outline

- 1. Number systems
- 2. Unsigned Representations
- 3. Signed Representations
- 4. Building adders/subtracter
- 5. Homework

Other number/encoding systems

- Binary-coded decimal
 - Wastes fractional bit for alignment
- ASCII: 7-bit characters
 - Parity
 - Best to see a chart
 - 0x61 = 97 = 'a'
 - $0 \times 47 = 71 = 'G'$

Other number/encoding systems

Unicode: 16-bit

- Similar to ASCII
- International
- Allows about $2^{16} = 65,536$ characters
- Enough for symbolic writing systems

Outline

- 1. Number systems
- 2. Unsigned Representations
- 3. Signed Representations
- 4. Building adders/subtracter
- 5. Homework

Standard unsigned binary numbers

Given an *n*-bit number in which d_i is the *i*th digit, the number is

$$\sum_{i=1}^{n} 2^{i-1} d_i$$

Unsigned addition

Consider adding 9 (1001) and 3 (0011)

Unsigned addition

Unsigned addition

Consider adding 9 (1001) and 3 (0011) 1 1 1 0 0 1 + 0 0 1 10 0

Unsigned addition

Consider adding 9 (1001) and 3 (0011) 1 1 1 0 0 1 + 0 0 1 11 0 0

Unsigned addition

Consider adding 9 (1001) and 3 (0011) 1 1 1 0 0 1 + 0 0 1 1- 1 0 0

Unsigned addition

Consider adding 9 (1001) and 3 (0011) $1 \quad 1$ $1 \quad 0 \quad 0 \quad 1$ $+ \quad 0 \quad 0 \quad 1 \quad 1$ $1 \quad 1 \quad 0 \quad 0$ Why an extra column?

Overflow

- If the result of an operation can't be represented in the available number of bits, an *overflow* occurs
- E.g., 0110 + 1011 = 0001
- Need to detect overflow

Overflow

- If the result of an operation can't be represented in the available number of bits, an *overflow* occurs
- E.g., 0110 + 1011 = 10001
- Need to detect overflow

Gray code

Useful for shaft encoding

Sequence?

Gray code

- To convert from a standard binary number to a Gray code number XOR the number by it's half (right-shift it)
- To convert from a Gray code number to a standard binary number, XOR each binary digit with the parity of the higher digits

Given that a number contains *n* digits and each digit, d_i , contributes 2^{i-1} to the number

$$\mathcal{P}_j^k = d_j \oplus d_{j+1} \dots \oplus d_{k-1} \oplus d_k \ d_i = d_i \oplus \mathcal{P}_{i+1}^n$$

Gray code

- Converting from Gray code to standard binary is difficult
 - Take time approximately proportional to n
- Doing standard arithmetic operations using Gray coded numbers is difficult
- Generally slower than using standard binary representation
- E.g., addition requires two carries
- Why use Gray coded numbers?
 - Analog to digital conversion
 - Reduced bus switching activity

Outline

- 1. Number systems
- 2. Unsigned Representations
- 3. Signed Representations
- 4. Building adders/subtracter
- 5. Homework

Signed number systems

- Three major schemes
 - Sign and magnitude
 - One's complement
 - Two's complement

Number system assumptions

- Four-bit machine word
- 16 values can be represented
- Approximately half are positive
- Approximately half are negative

- *d_n* represents sign
 - 0 is positive, 1 is negative
- Two representations for zero
- What is the range for such numbers?

- *d_n* represents sign
 - 0 is positive, 1 is negative
- Two representations for zero
- What is the range for such numbers?
 - Range: $[-2^{n-1}+1, 2^{n-1}-1]$

- How is addition done?
- If both numbers have the same sign, add them like unsigned numbers and preserve sign
- If numbers have differing signs, subtract smaller magnitude from larger magnitude and use sign of large magnitude number

- Consider 5 + -6
- Note that signs differ
- $\bullet\,$ Use magnitude comparison to determine large magnitude: 6-5
- Subtract smaller magnitude from larger magnitude: 1
- Use sign of large magnitude number: -1

Direct subtraction

0	1	1	0
0	1	0	1

- Note that this operation is different from addition
- Sign and magnitude addition is complicated

Direct subtraction

		b	
0	1	1	0
0	1	0	1
			1

- Note that this operation is different from addition
- Sign and magnitude addition is complicated

Direct subtraction

		b	
0	1	1	0
0	1	0	1
		0	1

- Note that this operation is different from addition
- Sign and magnitude addition is complicated

Direct subtraction

		b	
0	1	1	0
0	1	0	1
	0	0	1

- Note that this operation is different from addition
- Sign and magnitude addition is complicated

Direct subtraction

		b	
0	1	1	0
0	1	0	1
0	0	0	1

- Note that this operation is different from addition
- Sign and magnitude addition is complicated

One's compliment

One's compliment

- If negative, complement all bits
- Addition somewhat simplified
- Do standard addition except wrap around carry back to the 0th bit
- Potentially requires two additions of the whole width
 - Slow

One's complement addition

Consider adding -5 (1010) and 7 (0111)

One's complement addition

Consider adding -5 (1010) and 7 (0111)

One's complement addition

Consider adding -5 (1010) and 7 (0111)
One's complement addition

One's complement addition

One's complement addition

One's complement addition

- $\bullet\,$ To negate a number, invert all its bits and add 1
- · Like one's complement, however, rotated by one bit
- Counter-intuitive
 - However, has some excellent properties

- Only one zero
 - · Leads to more natural comparisons
- One more negative than positive number
 - This difference is irrelevant as *n* increases
- Substantial advantage Addition is easy!

Two's complement addition

- No looped carry Only one addition necessary
- If carry-in to most-significant bit \neq carry-out to most-significant bit, overflow occurs
- What does this represent?
- Both operands positive and have carry-in to sign bit
- Both operands negative and don't have carry-in to sign bit

Number systems Signed Representations

Two's complement overflow

а	b	cin	cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Number systems Signed Representations

Two's complement overflow

а	b	cin	cout
0	0	0	0
0	0		0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1		1
1	1	1	1

Outline

- 1. Number systems
- 2. Unsigned Representations
- 3. Signed Representations
- 4. Building adders/subtracter
- 5. Homework

Half adder

For two's complement, don't need subtracter В А cout sum 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 cout = AB $sum = A \oplus B$

Half adder

Full adder

Need to deal with carry-in							
А	В	cin	cout	sum			
0	0	0	0	0			
0	0	1	0	1			
0	1	0	0	1			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	1	0			
1	1	0	1	0			
1	1	1	1	1			

33

Full adder

 $sum = A \oplus B \oplus cin$ cout = AB + A ci + B ci

Cascaded full-adders

Full adder standard implementation

Six logic gates

Full adder composed of half-adders

 $AB + ci(A \oplus B) = AB + B ci + A ci$

Adder/subtracter

Consider input to cin

Ripple-carry delay analysis

- The critical path (to *cout*) is two gate delays per stage
- Consider adding two 32-bit numbers
- 64 gate delays
 - Too slow!
- Consider faster alternatives

Carry lookahead adder

- Lecture notes give detail for completeness
- However, primarily important to understand that carry lookahead compresses many levels of a carry chain into fewer levels for speed
- Will need to understand carry select adders in detail
- Carry generate: G = AB
- Carry propagate: $P = A \oplus B$
- Represent sum and cout in terms of G and P

Overview: Carry lookahead adder

 $sum = A \oplus B \oplus cin$ $= P \oplus cin$

$$cout = AB + A cin + B cin$$

 $= AB + cin(A + B)$
 $= AB + cin(A \oplus B)$
 $= G + cin P$

Overview: Carry lookahead adder

Flatten carry equations

 $cin_{1} = G_{0} + P_{0} cout_{0}$ $cin_{2} = G_{1} + P_{1} cout_{1} = G_{1} + P_{1}G_{0} + P_{1}P_{0} cout_{0}$ $cin_{3} = G_{2} + P_{2} cout_{2} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0} cout_{0}$ $cin_{4} = G_{3} + P_{3}C_{3} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0} cout_{0}$ Each *cin* can be implemented in three-level logic

Carry lookahead building block

Carry lookahead adder

Carry lookahead delay analysis

- Assume a 4-stage adder with CLA
- Propagate and generate signals available after 1 gate delays
- Carry signals for slices 1 to 4 available after 3 gate delays
- Sum signal for slices 1 to 4 after 4 gate delays

Carry lookahead

- No carry chain slowing down computation of most-significant bit
 - Computation in parallel
- More area required
- Each bit has more complicated logic than the last
- Therefore, limited bit width for this type of adder
- Can chain multiple carry lookahead adders to do wide additions
- Note that even this chain can be accelerated with lookahead
 - Use internal and external carry lookahead units

Cascaded carry lookahead adder

Delay analysis for cascaded carry lookahead

- Four-stage 16-bit adder
- cin for MSB available after five gate delays
- sum for MSB available after eight gate delays
- 16-bit ripple-carry adder takes 32 gate delays
- Note that not all gate delays are equivalent
- Depends on wiring, driven load
- However, carry lookahead is usually much faster than ripple-carry

Carry select adders

- Trade even more hardware for faster carry propagation
- Break a ripple carry adder into two chunks, low and high
- Implement two high versions
 - high₀ computes the result if the carry-out from low is 0
 - high₁ computes the result if the carry-out from low is 1
- Use a MUX to select a result once the carry-out of low is known
 - high₀'s cout is never greater than high₁'s cout so special-case MUX can be used

Carry select adder

Delay analysis of carry select adder

- Consider 8-bit adder divided into 4-bit stages
- Each 4-bit stage uses carry lookahead
- The 2:1 MUX adds two gate delays
- 8-bit sum computed after 6 gate delays
- 7 gate delays for carry lookahead
- 16 gate delays for ripple carry

- Number systems
- Adders and subtracters

Outline

- 1. Number systems
- 2. Unsigned Representations
- 3. Signed Representations
- 4. Building adders/subtracter
- 5. Homework

Reading assignment

- M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- Finish Sections 5.1-5.6