
1

Slide 1© 2004 Microchip Technology Incorporated MPLAB SIM Software Simulation Engine

MPLAB® SIM
MPLAB IDE Software

Simulation Engine

Welcome to this web seminar on MPLAB SIM, the software simulator that
comes with the free MPLAB Integrated Development Environment, or IDE.

My name is Darrel Johansen and I’m a manager for Development Systems at
Microchip Technology.

This 20 minute seminar will focus on MPLAB SIM, and will demonstrate how
this tool can be used to develop and debug code for Microchip
microcontrollers.

2

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 2

MPLAB® SIM
WebSeminar Agenda

l MPLAB SIM is one “debug engine” used by
MPLAB IDE

l MPLAB SIM has debug features similar to
other debug engines

l MPLAB SIM has some unique debug
features

l MPLAB SIM can have input stimulus signals
and can log register outputs to files

This seminar will describe MPLAB SIM, one of the debug engines available
for MPLAB IDE.

It has similar features to other debug engines, allowing the engineer to switch
from one to another without encountering a new learning curve.

MPLAB SIM also has some unique debugging features that are not available
in the hardware debuggers.

In order to debug the operation of code with simulated external signals, input
stimulus events can be created. And in order to measure how an application
performs, registers can be logged to files, graphed and be subjected to further
analysis.

3

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 3

Debug Engines

MPLAB SIM

MPLAB ICE 2000

MPLAB ICD 2

MPLAB ICE 4000

MPLAB® IDE

Debugger

The other debug engines are hardware devices, while MPLAB SIM is a
software program, running on your PC.

MPLAB SIM provides many of the same features as in-circuit emulators and
in-circuit debuggers. The difference is that both in-circuit emulators and in-
circuit debuggers allow the code to be run on actual silicon, and also allow a
target application hardware to be functional while being debugged.

MPLAB SIM has features to simulate hardware interaction with other signals
and devices, and since it is running as software on the PC, it has complete
information about the internal state of the simulated chip at each instruction.
This is a little different from the hardware debuggers because, while they are
running code at full speed, they typically cannot monitor all registers and all
memory in real time.

Both MPLAB SIM and the hardware debuggers can do the traditional functions
of debuggers, but due to their differences, they can have unique features of
their own. This presentation will identify the functions and features of MPLAB
SIM.

4

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 4

Debugger

Basic Functions:

• Reset Target

• Execute Code

• Halt Code

• Examine/Modify Registers/Memory

• Single-Step Code

The debugger is a part of MPLAB IDE, and whether you are using MPLAB SIM,
MPLAB ICE or MPLAB ICD 2, most operations are exactly the same. This
allows you to develop code using the simulator, then when your hardware is
ready, you can use a hardware debugger to further test your code in practice
without having to learn how to use a new tool.

These are the basic debug functions:

•Reset the target, in order to restart the application

•Execute the code so the program can be tested to verify it functions as
designed

•Halt the code at breakpoints

•While halted at breakpoints, memory and variables can be examined
and modified to analyze and debug the application code

•To closely inspect how code executes, each instruction can be Single
stepped. This allows the engineer to go through code one instruction
at a time while monitoring affected variables, registers and flags. Single
stepping essentially “zooms in” on code to ensure that it operates
properly in complex and critical sections with ranges of variable values
and under various test conditions.

5

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 5

Debugger

Advanced Functions:
• Watch Points
• Trace Buffer
• Stopwatch
• Complex Breakpoints
• Correlate Machine Code Execution
 and Memory Contents with
 High Level Language Source

Most debuggers also have additional features to help analyze and debug the application. Some of these are listed
here:

• Watch points group and monitor selected variables and memory locations into a convenient, custom readout.

• Trace buffers capture the streams of instructions executed and reveal the contents of changing register values.

• A Stopwatch can time a section of code. Routines can be optimized, and critical code timing can be accurately
measured and adjusted.

• Complex breakpoints offer a method for establishing breakpoints or for gathering data in the trace buffer based
upon multiple conditions. Simple breakpoints allow setting breakpoints in the source code or anywhere in program
memory. Complex breakpoints allow getting a breakpoint on a condition such as,

• “after the main routine called “RefreshDisplay” executes then
• wait for subroutine “ReadTemp” to execute. Then
• break if the variable named “Temperature” is greater than 20. “

Complex events can even be constructed to count events, so that a subroutine would have to be executed 15 times
before it starts looking for a value on a pin or in a register. This kind of breakpoint allows you to describe the
condition where your code misbehaves, then gets a breakpoint or traces code at that condition. This is usually a
faster way of finding bugs than simply setting simple breakpoints and stepping through your code.

• Finally, most advanced debuggers allow you to correlate the execution of the application on the target with the
source code. This allows you to single step through C source code, even though each C statement may generate
many lines of machine code. Likewise, memory storage in file registers is correlated with the variables you use in
your program. So if you have a floating point number that spans multiple machine file registers, you can monitor the
multiple file register contents in a Watch Point to display the value in floating point representation.

6

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 6

Simulator

l Runs as a software program on PC
l Runs at a speed determined by PC speed,

simulation activities, operating system tasks,
but times events based upon simulated
operating frequency.

l Simulates core CPU, memory, many
peripherals

l Responds to simulated inputs called stimulus
signals.

l Can log outputs to files for further analysis.

MPLAB SIM is a simulator, and as a result it has certain characteristics that
make it a unique debug engine. In modern Windows based PCs, many things
are happening in the background --other programs may be running, hardware
may be communicating to the PC, and so on. So the speed of the simulation
is determined by

•how fast your PC executes,

•the complexity of the current simulation, and

•the number of other tasks executing on your PC.

Currently the maximum speed of MPLAB SIM is on the order of 10 MIPS, or
10 million instructions per second. This will be affected by how many other
things are being done by your PC, by the code the simulator is running, and by
the other tasks that the simulator is performing.

The simulator simulates the operation of

•the core CPU and it’s internal registers,

•memory, and

•many of it’s peripherals.

In order to test the application on the simulator, stimulus signals can be
applied to pins and registers.

To evaluate performance, the simulator can log changing registers to files for
further analysis.

7

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 7

MPLAB® IDE Desktop

This is the MPLAB IDE desktop when it is first started up.

There is

•a standard menu across the top

•a tool bar below this,

•a blank “Workspace window,” and

•a status bar on the bottom.

8

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 8

MPLAB® IDE Select Debug
Engine

MPLAB SIM is selected as our debug engine from the Debugger menu.

Note the other functions on the debug menu, such as Run, Step, and
Breakpoints.

We’ll look closer at some of these other options soon.

9

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 9

MPLAB® SIM

Once a debug engine is selected, the toolbar is appended with some new
icons for running, halting, single stepping, and resetting the target.

10

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 10

MPLAB® SIM

The Status bar now shows some additional information as well.

•MPLAB SIM shows as our current debug engine.

•The simulated processor is listed, in this case the PIC18F452,

•then the program counter,

•the W register,

•the current state of the internal CPU flags and

•the current selected file register bank.

11

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 11

MPLAB® SIM

Operations can be selected in multiple ways depending upon how you
like to work. You can select functions from:
•The toolbar icons,
•the menus, or
•the hot keys listed on the menus

can be used to execute the debug functions. Note that some functions are a
little more complex, such as Reset, which actually has four types of reset
actions.

Once MPLAB SIM is established as the debug engine, whenever a project is
built, it is automatically loaded into the simulator’s program memory to be run
and tested.

Various debug windows become available…<click>

12

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 12

MPLAB® SIM
Source Code Window

One debug window is the source code window. This is actually the editor,
and breakpoints can be set by clicking on a line with the right mouse button.
Single stepping with the source code window in focus will single step through
the C source lines. Since you are in the editor, changes can be done quickly,
and the project can be rebuilt.

13

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 13

MPLAB® SIM
Program Memory Window

The Program Memory window shows the machine code that will be executed
by the simulator. Single stepping with this window in focus will allow you to
step through each machine instruction.

14

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 14

MPLAB® SIM
Disassembly Window

Another window, called the Disassembly Listing window shows high level
source code interspersed with machine code generated by each C
statement.

15

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 15

MPLAB® SIM
Watch Window

You can also open up a watch window and drag the variables from your
program to see the contents as you break and single-step through your code.

While debugging, other windows are available to view

•register memory,

•stack memory, and

• non-volatile data memory areas.

16

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 16

MPLAB® SIM
Stopwatch

The Stopwatch dialog can time sections of code as they run on the simulator.

The Stopwatch calculations are based upon the instructions executed and the
setting entered for the Processor Frequency. The processor frequency is set to
20 Mhz in this example.

From the number of instruction cycles executed, the total time is calculated.

This is the time it would take to run on a real chip.

17

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 17

MPLAB® SIM
Stopwatch

The stopwatch has two pairs of readouts, one tells the total simulated clock
cycles and the corresponding execution time…<click>

18

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 18

MPLAB® SIM
Stopwatch

…and the other can be zeroed out, to make a measurement from one
breakpoint to the next.

19

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 19

MPLAB® SIM

The stopwatch is one way to measure time in the simulator, but there is
another:

The trace buffer records instructions when they execute and puts a time
stamp on each instruction.

After you capture events in the trace buffer, you can time them.

The trace buffer has the advantage that it can capture large amounts of data
selectively and each instruction has a time stamp.

You can capture an interrupt routine, for instance, and then easily calculate the
time between interrupts and the total time each interrupt took to execute.

20

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 20

Simulation Engine
Core

CPU Core
and Memory

A block diagram of the simulator might look like this. At the center is the
simulation of

the CPU core with the various program, file and data memory areas;

•the instructions;

•the stack;

•the program counter and

•the status flags of the device being simulated.

21

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 21

Simulation Engine

CPU Core
and Memory

Registers

Pins Peripherals

Simulation includes pin inputs and outputs as well as many of the other
peripherals.

The peripherals communicate to the application through special function
registers.

22

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 22

Simulation Engine

Stimulus

CPU Core
and Memory

Registers

Pins Peripherals

A complex Stimulus Generator simulates signals that can be applied to the
device under simulation.

The stimulus generator can send signals to pins or to registers in the simulator.

23

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 23

Simulation Engine

Stimulus Log

CPU Core
and Memory

Registers

Pins Peripherals

The activity of the simulator can be sent to a Log file for later analysis. This is
done by using either the USART as a communication device for inputs and
outputs, or by using the register log feature. Both stimulus and logging
activity can be driven either by

•execution at a specified program counter address or

•by sequencing “on demand.”

“On demand” means that whenever that register is read by an instruction, a
value is read from or written to a list, then advanced to the next position in the
list.

24

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 24

Stimulus Sources

• Manual

•Cyclic

• Sequence

There are three types of Stimulus sources for MPLAB SIM:

•Manual triggers are changes in digital signal levels caused by clicking
on a button with a mouse. These allow you to simulate the action of
closing a switch, or pulsing a pin.

•A Cyclic stimulus generates a repeating waveform, either a for a pre-
determined length of time, or continuously.

•Sequential data is data that can be applied to pins, registers, or bits in
registers from a list.

A list for sequential data can be entered in a

•dialog or it can come from

•a file.

25

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 25

Stimulus Controller

Here is the Stimulus Controller for MPLAB SIM.

In this dialog, you can select actions to apply to a pin and then, when your
program is running, you can press the associated “Fire” button to the left of the
pin name to activate that signal.

26

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 26

Stimulus Controller:
Manual

For instance, we could set up a pulse to occur on PORTA pin RA3.

Here, when we press the Fire button, the simulated signal on RA3 will pulse
high for 8 microseconds.

27

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 27

Stimulus Controller:
Manual

More actions can be added. Here two more are shown,

•one to force the INT0 pin low when we press the fire button, and

•one to toggle the INPUT pin for the Timer/Counter.

A “Toggle” Action will alternate between setting the pin high and low each
time the Fire button is pressed.

28

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 28

SCL Workbook:
Pin / Register Actions

For more complex stimulus control, actions are entered in the SCL Workbook.

SCL stands for Stimulus Control Language, but with the graphical user
interface of MPLAB, all stimulus events can be set up with these easy
graphical dialogs. Once the events are described in the SCL Workbook, they
are compiled into an SCL file that can then be loaded into the Stimulus
Controller.

There are five tabs in this workbook.

29

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 29

SCL Workbook:
Pin / Register Actions

The first tab in the SCL Workbook uses a list of times and signals to be
applied to pins and registers.

For instance, we can set up a series of events to happen on pin RA1.

•Here 15 microseconds after the program is reset and started,

•the pin RA1 will go high.

•Then at 35 microseconds after the start of the program pin RA1 will
go low.

We can add other steps and signals to this dialog.

30

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 30

SCL Workbook:
Pin / Register Actions

Here sequences of events are applied to

•pin RA1,

•PORTB,

•the Timer interrupt flag, and

•to the A/D buffer.

The list of values under the column labeled

PORTB are 8-bit values that will be applied to all eight pins of PORTB

at the times entered down the left column.

The next column is a list for a signal connected to the

•Timer0 interrupt flag,

an internal register.

The two columns on the right allow the

•A/D buffer

to be set to a sequence of 10-bit values.

31

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 31

SCL Workbook:
Advanced Pin / Register

The second tab in the SCL Workbook, the Advanced Pin/Register tab,
provides conditional control over events.

32

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 32

SCL Workbook:
Advanced Pin / Register

Here a condition must occur before the stimulus is activated.

The condition is described in the bottom section.

The condition is gating the event to happen

•2 microseconds after pin CCP1 goes low.

When that occurs, a value of 55 will be applied to PORTB.

33

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 33

SCL Workbook:
Advanced Pin / Register

Other events can be described on subsequent lines.

The event can be a “1x” event, which means that it will occur only once, or it
can be a Continuous event, meaning that will happen every time the
associated condition occurs.

Here a second event happens each time TMR2 reaches a value of 84.

When this happens, PORTB will change to a value of 10, and the INT1 pin will
go high.

There is a 10 microsecond re-arm delay. This prevents this event from
happening sooner than 10 microseconds after its last firing.

34

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 34

SCL Workbook:
Clock Stimulus

The Clock Stimulus tab of the SCL Workbook generates repeating digital
waveforms.

35

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 35

SCL Workbook:
Clock Stimulus

Four waveforms are entered here.
The first called iStrobe

•holds the RA5 pin low for 10 instruction cycles, then

•goes high for 15 instruction cycles.
•It starts immediately, and never stops.

A Comments column and the Label column are user-defined labels for this dialog, and are
free-form, allowing any text entry. The label is arbitrary, simply for tagging the lines in this
dialog with a descriptive name.

Line two describes a waveform that will be applied to RA6.

•RA6 will start out low,
•stay low for 100 cycles,

•then go high for 150 cycles.

•It will not start until the program counter reaches the routine called “test.”
•It will begin cycling and

•will stop when the program counter reaches a routine labeled “done.”

Line three describes a stimulus event depending upon the INT1 level. When INT1 goes low the signal on
RC0 goes low for 2 cycles then high for 50 cycles. It will continue cycling until INT1 goes high.

The last line generates a signal on

•RC3 that starts low,
•stays low for 3 cycles,

•then goes high for 30 cycles.

•It starts this operation only after 1500 cycles have elapsed since the program was reset, and
•will stop 1800 cycles after the program started, being active for only those 300 cycles.

The last two tabs, Register Injection and Register Trace will be used in the following example.

36

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 36

Simulated Process

For this next example, two waveforms will be added together and sent out
PORTB, possibly to go to a Digital to Analog converter.

The diagram represents the two waveforms on the left being applied to to
A/D pins of the microcontroller chip in the middle.

The 8 Pins from PORTB go out to some device that will convert them back
into analog signals.

37

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 37

Code: Add Two Waves

This is the entire program that will be used to add the two waves that are
coming in to the A/D converter from two pins, then output that sum to PORTB.

38

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 38

Add Two Waves
Code

while (1)
{ if(ADCON0 & 0x08)

{ ADCON0 &= 0xF7; // select AN0
 ADCON0 |= 0x04 ; // set GO bit

 Delay();
 input0 = ADRESL; // read AN0
}

 else
{ ADCON0 |= 0X08; // select AN1

 ADCON0 |= 0x04; // set GO bit
 Delay();

 PORTB = (ADRESL + input0)/2;
// add AN0 AN1 and scale

 }
}

Here is just the essential code from the main routine.

The code executes in this infinite loop, alternately getting inputs from pins AN0
and AN1.

Line 2 looks at bit 3 of ADCON0 to see whether AN0 or AN1 was used in the
last conversion, and switches to the alternate input pin.

The A/D conversion is started by

•setting bit 3, the GO bit in ADCON0,

•then a delay is needed to allow conversion time before reading.

The first wave is read in from AN0, and stored in the variable named input0.

39

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 39

Add Two Waves
Code

while (1)
{ if(ADCON0 & 0x08)

{ ADCON0 &= 0xF7; // select AN0
 ADCON0 |= 0x04 ; // set GO bit

 Delay();
 input0 = ADRESL; // read AN0
}

 else
{ ADCON0 |= 0X08; // select AN1

 ADCON0 |= 0x04; // set GO bit
 Delay();

 PORTB = (ADRESL + input0)/2;
// add AN0 AN1 and scale

 }
}

The next time through the loop, the “else” clause will execute, and

•input0 will be added to

•the A/D signal from AN1 and

•sent out PORTB.

40

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 40

Code: Add Two Waves
Input File

A source file is made up containing the values for the waves being applied to
the two A/D pins

41

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 41

Code: Add Two Waves
Register Injection

The register injection tab of the SCL workbook allows us to set up the A/D
conversion register to receive it’s input from the data file, named waves.txt.

The number will be

•interpreted as decimal values,

•will rewind –starting over when the end of the file is reached–

•and the values will be sent to the A/D conversion register on demand.

This means that each time the A/D conversion register is read by our program,
the next value in the file will be used.

42

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 42

Code: Add Two Waves
Register Trace

In order to validate that the code is working, we use the Register Trace tab of
the SCL workbook

and set PORTB to be logged on demand, in other words, each time it is
written to.

The values will be sent as decimal number to the file named
PORTWAVES.TXT.

Now we generate the SCL file by compiling…<click>

43

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 43

Code: Add Two Waves
Attach SCL File

…then open the Stimulus Controller and attach our SCL files.

Now we can run the application.

44

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 44

Code: Add Two Waves
Graph Output

0

50

100

150

200

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346
0

50

100

150

200

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346

After stopping the application, we have the results of our log in the file named
PORTWAVES.Txt .

We can open the file to look at it, then paste the values into a program like
MATLAB or Excel to graph the wave.

45

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 45

MPLAB® SIM Technology
dsPIC30F

l High Speed
l Many Peripherals Simulated
l Complex Stimulus and Output File Logging
l MPLAB C30 C Compiler printf() Support

PIC18
l High Speed
l Many Peripherals Simulated
l Complex Stimulus and Output File Logging
l MPLAB C18 C Compiler printf() Support SOON!

PIC10/12/16
l High Speed SOON!
l Many Peripherals Simulated SOON!
l Complex Stimulus and Output File Logging SOON!

This has been a short demonstration of some of the powers of MPLAB SIM in
conjunction with the C compilers, MPLAB C30 and MPLAB C18..

Currently the high speed and extensive peripheral simulation extend to the
PIC18 and dsPIC microcontrollers. The dsPIC family has one additional
stimulus feature: the ability to use printf() statements from MPLAB C30 to
log output files. With printf() logging, reports can be generated with
precise formatting, and with complex data types.

All Microchip Technology microcontrollers are simulated in MPLAB, but
only the PIC18 and dsPIC devices have these complex stimulus features,
high simulation speed and extensive peripheral simulation.

As this web seminar is being developed, MPLAB v6.60 is the latest release.
This new simulation technology is being tested in the PIC10/12/16 series
microcontrollers, and the printf() feature is being added to MPLAB C18.

Be prepared to see the simulator get turbo-charged when these are
implemented in future versions of MPLAB IDE and the MPLAB C18 compiler.

46

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 46

MPLAB® SIM
Summary

l MPLAB SIM is a free software tool to help debug
code for Microchip microcontrollers

l MPLAB SIM simulates the CPU core, many
peripherals, and the pins of the device

l MPLAB debugger uses MPLAB SIM as a debug
engine to test application code

l MPLAB SIM can perform time measurement of
code

l Stimulus signals can be applied to pins and
registers to test an application

l Logged events can be used to validate and
analyze applications

To recap the features of MPLAB SIM:

MPLAB SIM and MPLAB are available free for download from
www.microchip.com.

It supports all current PICmicros and dsPIC microcontrollers made by
Microchip Technology, and as new processors are developed, MPLAB SIM is
extended to support them.

MPLAB SIM simulates the CPU core, the various memory areas, many
peripherals and the pins of the microcontroller.

MPLAB’s debugger functions use MPLAB as one of several debug engines to
test code. The other debug engines are in-circuit emulators and in-circuit
debuggers.

MPLAB SIM can accurately measure code timing using the Stopwatch or the
time stamp feature of the Trace Buffer.

Stimulus signals can be applied to pins and registers. These signals can be
triggered manually, can be set up as lists of events, can be repetitive
waveforms, and can be activated by complex conditions.

47

© 2004 Microchip Technology Incorporated An introduction to MPLAB Integrated Development Environment Slide 47

Download FREE
www.microchip.com

And did we say that you can download MPLAB IDE which includes MPLAB
SIM and all these features free from the Microchip Web site?

Thank you for your time.

