

Welcome to this web seminar on **MPLAB SIM**, the software simulator that comes with the free **MPLAB Integrated Development Environment**, or **IDE**.

My name is **Darrel Johansen** and I'm a manager for Development Systems at Microchip Technology.

This 20 minute seminar will focus on **MPLAB SIM**, and will demonstrate how this tool can be used to develop and debug code for Microchip microcontrollers.

This seminar will describe MPLAB SIM, one of the **debug engines** available for MPLAB IDE.

It has similar features to other debug engines, allowing the engineer to switch from one to another without encountering a new learning curve.

MPLAB SIM also has some unique debugging features that are not available in the hardware debuggers.

In order to debug the operation of code with simulated external signals, input stimulus events can be created. And in order to measure how an application performs, registers can be logged to files, graphed and be subjected to further analysis.

The other debug engines are **hardware** devices, while MPLAB SIM is a **software** program, running on your **PC**.

MPLAB SIM provides many of the same features as in-circuit emulators and in-circuit debuggers. The **difference** is that both in-circuit emulators and in-circuit debuggers allow the code to be run on actual **silicon**, and also allow a target application hardware to be functional while being debugged.

MPLAB SIM has features to simulate hardware interaction with other signals and devices, and since it is running as software on the PC, it has **complete information** about the internal **state** of the simulated chip at **each instruction**. This is a little different from the hardware debuggers because, while they are running code at full speed, they typically cannot monitor all registers and all memory in real time.

Both MPLAB SIM and the hardware debuggers can do the traditional functions of debuggers, but due to their differences, they can have unique features of their own. This presentation will identify the functions and features of MPLAB SIM.

The debugger is a part of MPLAB IDE, and whether you are using MPLAB SIM, MPLAB ICE or MPLAB ICD 2, most operations are exactly the same. This allows you to develop code using the simulator, then when your hardware is ready, you can use a hardware debugger to further test your code in practice without having to learn how to use a new tool.

These are the basic debug functions:

•Reset the target, in order to restart the application

•Execute the code so the program can be tested to verify it functions as designed

•Halt the code at breakpoints

•While halted at breakpoints, memory and variables can be **examined and modified** to analyze and debug the application code

•To closely inspect how code executes, each instruction can be **Single stepped**. This allows the engineer to go through code one instruction at a time while monitoring affected variables, registers and flags. Single stepping essentially "zooms in" on code to ensure that it operates properly in complex and critical sections with ranges of variable values and under various test conditions.

Most debuggers also have additional features to help analyze and debug the application. Some of these are listed here:

- Watch points group and monitor selected variables and memory locations into a convenient, custom readout.
- Trace buffers capture the streams of instructions executed and reveal the contents of changing register values.

• A **Stopwatch** can time a section of code. Routines can be optimized, and critical code timing can be accurately measured and adjusted.

• **Complex breakpoints** offer a method for establishing breakpoints or for gathering data in the trace buffer based upon **multiple conditions**. Simple breakpoints allow setting breakpoints in the source code or anywhere in program memory. Complex breakpoints allow getting a breakpoint on a condition such as,

- "after the main routine called "RefreshDisplay" executes then
- wait for subroutine "ReadTemp" to execute. Then
- break if the variable named "Temperature" is greater than 20. "

Complex events can even be constructed to count events, so that a subroutine would have to be executed 15 times before it starts looking for a value on a pin or in a register. This kind of breakpoint allows you to describe the **condition** where your code misbehaves, then gets a breakpoint or traces code **at that condition**. This is usually a faster way of finding bugs than simply setting simple breakpoints and stepping through your code.

• Finally, most advanced debuggers allow you to **correlate** the execution of the application on the target with the source code. This allows you to single step through C source code, even though each C statement may generate many lines of machine code. Likewise, memory storage in file registers is correlated with the variables you use in your program. So if you have a floating point number that spans multiple machine file registers, you can monitor the multiple file register contents in a Watch Point to display the value in floating point representation.

MPLAB SIM is a simulator, and as a result it has certain characteristics that make it a unique debug engine. In modern Windows based PCs, many things are happening in the background --other programs may be running, hardware may be communicating to the PC, and so on. So the speed of the simulation is determined by

•how fast your PC executes,

•the complexity of the current simulation, and

•the number of other tasks executing on your PC.

Currently the maximum speed of MPLAB SIM is on the order of **10 MIPS**, or 10 million instructions per second. This will be affected by how many other things are being done by your PC, by the code the simulator is running, and by the other tasks that the simulator is performing.

The simulator simulates the operation of

•the core CPU and it's internal registers,

•memory, and

•many of it's peripherals.

In order to test the application on the simulator, **stimulus** signals can be applied to pins and registers.

To evaluate performance, the simulator can **log** changing registers to files for further analysis.

This is the MPLAB IDE desktop when it is first started up.

There is

•a standard menu across the top

•a tool bar below this,

- •a blank "Workspace window," and
- •a status bar on the bottom.

bSeminars		EI	ngi	ne	
	MPLAB IDE v6.60				
	File Edit View Project	Debugger Programm Select Tool Clear Memory	ner Tool ► ►	ls Configure Window None 1 MPLAB ICD 2	Help Checksun
		Run Animate Halt	F9	2 MPLAB ICE 4000 3 MPLAB SIM 4 MPLAB ICE 2000	
		Step Into Step Over Step Out	F7 F8		
		Reset Breakpoints	• F2		
		StopWatch Stimulus Controller SCL Generator Profile Refresh PM)))		
		Settings			

MPLAB SIM is selected as our debug engine from the Debugger menu.

Note the other functions on the debug menu, such as **Run**, **Step**, and **Breakpoints**.

We'll look closer at some of these other options soon.

Once a debug engine is selected, the toolbar is appended with some new icons for running, halting, single stepping, and resetting the target.

The Status bar **now** shows some additional information as well.

•MPLAB SIM shows as our current debug engine.

•The simulated processor is listed, in this case the PIC18F452,

•then the program counter,

•the W register,

- •the current state of the internal CPU flags and
- •the current selected file register bank.

bSeminar	•				
	MPLAB IDE v6.60				
	File Edit View Project	Debugger Programm	ier To	ols Configure Window	Help
	▏◘☞◼▏湠ヽ	Select Tool Clear Memory	+	* 8 4 4	Checksu
		Run Animate	F9		
		Halt	F5		
		Step Into	F7		
		Step Over	F8		
		Step Out			
		Reset	►	MCLR Reset	
		Breakpoints	F2	Watchdog Timer Reset Brown Out Reset	
		StopWatch		Processor Reset	F6
		Stimulus Controller	•		
		SCL Generator	•		
		Profile	•		
		Refresh PM			
		Settings			

Operations can be selected in multiple ways depending upon how you like to work. You can select functions from:

- •The toolbar icons,
- •the **menus**, or
- •the hot keys listed on the menus

can be used to execute the debug functions. Note that some functions are a little more complex, such as Reset, which actually has four types of reset actions.

Once MPLAB SIM is established as the debug engine, whenever a project is built, it is automatically loaded into the simulator's **program memory** to be run and tested.

Various debug windows become available...<click>

One debug window is the **source code window**. This is actually the **editor**, and breakpoints can be set by clicking on a line with the right mouse button. Single stepping with the source code window in focus will single step through the **C source lines**. Since you are in the editor, changes can be done quickly, and the project can be rebuilt.

The **Program Memory window** shows the machine code that will be executed by the simulator. Single stepping with this window in focus will allow you to step through each **machine instruction**.

Another window, called the **Disassembly Listing window** shows high level **source code interspersed with machine code** generated by each C statement.

You can also open up a **watch window** and drag the variables from your program to see the contents as you break and single-step through your code.

While debugging, other windows are available to view

- •register memory,
- •stack memory, and
- non-volatile **data memory** areas.

MPLAB [®] Stopwat	SIM ch
Stopwatch	
Stopwatch Tota Synch Instruction Cycles 5782123	al Simulated 49388272
Zero Time (Secs) 1.156425	9.877654
Processor Frequency (MHz)	20.00000

The **Stopwatch dialog** can time sections of code as they run on the simulator.

The Stopwatch calculations are based upon the instructions executed and the setting entered for the Processor Frequency. The processor frequency is set to 20 Mhz in this example.

From the number of instruction cycles executed, the total time is calculated.

This is the time it would take to run on a real chip.

MPLAB [®] SIM Stopwatch
Stopwatch
Stopwatch Total Simulated Synch Instruction Cycles 5782123 49388272 Zero Time (Secs.) 1.156425 9.877654
Processor Frequency (MHz) 20.000000

The stopwatch has two pairs of readouts, one tells the **total** simulated clock cycles and the corresponding execution time...<click>

MPLAB [®] SIM Stopwatch	
Stopwatch	
Stopwatch Total Simulated Synch Instruction Cycles 5782123 49388272 Zarra Time (Secs) 1156425 9.877654	
Processor Frequency (MHz) 20.000000	

...and the other can be zeroed out, to make a **measurement** from one breakpoint to the next.

	DCHIP	2		MPLAB [®] (SI	N									
Trace															
Line	Addr	Op	Label	Instruction	SA	SD	DA	DD	Time						
0	OOCA	6493	main	CLRF TRISB, ACCESS			OF93	00	0.000007200						
1	0000	D828		RCALL InitializeAD					0.000007400						
2	011E	OEC4	InitializeAD	MOVLW Oxc4	W		W	C4	0.000007800						
3	0120	6EC1		MOVWF ADCON1, ACCESS			OFC1	C4	0.000008000						
4	0122	0E81		MOVLW 0x81	W		W	81	0.000008200						
5	0124	6EC2		MOVWF ADCONO, ACCESS			OFC2	81	0.000008400						
6	OOCE	D82C		RCALL Delay					0.000009000						
7	OODO	B4C2		BTFSC ADCONO, 0x2, ACCESS	OFC2	81			0.000048800						
8	00D4	A6C2		BTFSS ADCONO, 0x3, ACCESS	OFC2	81			0.000049200						
9	00D6	D008		BRA Oxe8					0.000049400						
10	00E8	86C2		BSF ADCONO, Ox3, ACCESS	OFC2	81	OFC2	89	0.000049800						
11	OOEA	84C2		BSF ADCONO, 0x2, ACCESS	OFC2	89	OFC2	8D	0.000050000						
12	OOEC	D81D		RCALL Delay					0.000050200						
13	OOEE	50C3		MOVF ADRESL, W, ACCESS	OFC3	64	W	64	0.000090000						
14	OOFO	0100		MOVLB O			OFEO	00	0.000090200						
15	00F2	6A11		CLRF Ox11, ACCESS			0011	00	0.000090400						
16	00F4	258A		ADDWF inputO, W, BANKED	008A	44	W	A8	0.000090600						
17	00F6	6E10		MOVWF tmp 0, ACCESS			0010	A8	0.000090800						
18	00F8	518B		MOVF $0x8b$, \overline{w} , BANKED	008B	00	W	00	0.000091000						
19	OOFA	2211		ADDWFC Ox11, F, ACCESS	0011	00	0011	00	0.000091200						

The stopwatch is one way to measure time in the simulator, but there is another:

The **trace buffer** records instructions when they execute and puts a **time stamp** on each instruction.

After you capture events in the trace buffer, you can time them.

The trace buffer has the advantage that it can capture large amounts of data selectively and each instruction has a time stamp.

You can capture an interrupt routine, for instance, and then easily calculate the time **between interrupts** and the total time **each interrupt took** to execute.

A **block diagram** of the simulator might look like this. At the center is the simulation of

the CPU core with the various program, file and data memory areas;

•the instructions;

•the stack;

•the program counter and

•the status flags of the device being simulated.

Simulation includes **pin inputs** and **outputs** as well as many of the other **peripherals**.

The peripherals communicate to the application through **special function registers**.

A complex **Stimulus Generator** simulates signals that can be applied to the device under simulation.

The stimulus generator can send signals to pins or to registers in the simulator.

The activity of the simulator can be sent to a **Log file** for later analysis. This is done by using either the **USART** as a communication device for inputs and outputs, or by using the **register log** feature. Both stimulus and logging activity can be driven either by

•execution at a specified program counter address or

•by sequencing "on demand."

"**On demand**" means that whenever that register is read by an instruction, a value is read from or written to a list, then advanced to the next position in the list.

There are three types of Stimulus sources for MPLAB SIM:

•Manual triggers are changes in digital signal levels caused by clicking on a button with a mouse. These allow you to simulate the action of closing a switch, or pulsing a pin.

•A **Cyclic stimulus** generates a repeating waveform, either a for a predetermined length of time, or continuously.

•Sequential data is data that can be applied to pins, registers, or bits in registers from a list.

A list for sequential data can be entered in a

•dialog or it can come from

•a file.

Stimulus Controller - C:\\Light Operated Controller.stc	ars	1					
Stimulus (SCL) File Attach Detach Import/Merge Asynchronous Stimulus Fire Pin Action Width Units Comments Import (Merge) Delate Import (Merge) Import (Merge) Import (Merge) Import (Merge) Import (Merge) <th>_ St</th> <th>imulus Co</th> <th>ntroller - C:\.</th> <th>¥ight 0</th> <th>perated</th> <th>Controller.stc</th> <th></th>	_ St	imulus Co	ntroller - C:\.	¥ight 0	perated	Controller.stc	
Attach Detach Import/Merge Asynchronous Stimulus Fire Pin Action Width Units Comments Image: Image	Sti	imulus (SCL)	File				
Attach Detach Import/Merge Asynchronous Stimulus Fire Pin Action Width Units Comments Image: Image							
Asynchronous Stimulus		Attach	Detach	Import/h	lerge		
Fire Pin Action Width Units Comments Image: Strategy of the stra	As	ynchronous	Stimulus				
Delete row	F	ire Pin	Action	Width	Units	Comments	^
Delete row							
Delete row		_					=
Delete row							
Delete row							~
Delete low	1						Delete row
							Delete IOW

Here is the **Stimulus Controller** for MPLAB SIM.

In this dialog, you can select **actions** to apply to a **pin** and then, when your program is running, you can press the associated "**Fire**" button to the left of the pin name to **activate** that signal.

iars Man	nual
Stimulus Controller - C:\¥ight Operated Co	ontroller.stc
Stimulus (SCL) File Attach Detach Import/Merge	
Asynchronous Stimulus	Comments 🔊
> RA3 Pulse High 8 us li	light sensor
	=
Caue S	Delete row

For instance, we could set up a pulse to occur on **PORTA** pin **RA3**.

Here, when we press the **Fire** button, the simulated signal on **RA3** will **pulse high** for **8 microseconds**.

		Sti	muli I	us Ma	Controller: nual	
🛛 Stim	ulus Con	troller - C:\	. ∖Light Ope	erated	Controller.stc	
Stimu	us (SCL) Fi	ile				
Async	Attach hronous Sti	Detach	Import/M	erge		
Fire	Pin	Action	Width	Units	Comments	^
>	RA3	Pulse High	8	lus	light sensor	
>	INTO	Set Low			Reset interrupt switch	
>	TOCKI	Toggle			Counter input	
-						
-						~
				Saw		lete row

More actions can be added. Here two more are shown,

•one to force the INT0 pin low when we press the fire button, and
•one to toggle the INPUT pin for the Timer/Counter.

A "**Toggle**" Action will **alternate** between setting the pin **high** and **low** each time the Fire button is pressed.

	Workbook - [Untitled]	. – X
Pin Z	Register Actions Advanced Pin / Register Clock Stimulus Register Injection Register Trace	
Т	me Units cyc 🗸	
(d	ime Click here to Add Signals	
		=
		~

For more complex stimulus control, actions are entered in the SCL Workbook.

SCL stands for **Stimulus Control Language**, but with the graphical user interface of MPLAB, all stimulus events can be set up with these easy graphical dialogs. Once the events are described in the SCL Workbook, they are compiled into an SCL file that can then be loaded into the Stimulus Controller.

There are **five tabs** in this workbook.

	theorem [1	mmen						-	
Pin / Regi	ster Actions	Advanced P	^y in / Register	Clock S	timulus Re	egister Inject	ion Registe	er Trace	
Time U	Inits us 🔽	Ţ							
Time	BA1			Click here	to Add Sigr	nals			
(dec)	(bin)								
15	1								
35	0								
50	0								
									∃

The **first tab** in the SCL Workbook uses a **list of times** and **signals** to be applied to **pins** and **registers**.

For instance, we can set up a series of events to happen on pin RA1.

•Here 15 microseconds after the program is reset and started,

•the pin **RA1** will go **high**.

•Then at **35 microseconds** after the start of the program pin **RA1** will go **low**.

We can add other steps and signals to this dialog.

	SCL Wo	rkbool	k - C:\	.\probetest1.sb	S			
F	Pin / Regi	ster Aci	tions Adv	vanced Pin / Registr	er Clock S	timulus Regi	ster Injection Register Trace	
	Time U	Inits	us 💌					
	Time	BA1	PORTB	INTCON.TMROIF	ADRESH	ADRESL	Click here to Add Signals	^
	(dec)	(bin)	(hex)	(bin)				
	15	1	FO	0	00	10		
	35	0	F1	0	00	40		∃
	50	0	F4	0	01	80		
	150	0	F8	0	01	EF		
	2500	1	10	1	02	ЗE		_
	3000	0	1E	0	02	56		_
	3060	0	4C	0	02	DF		
	3200	0	30	0	03	06		
	4000	0	2A	0	03	94		_
								~

Here sequences of events are applied to

pin RA1,
PORTB,
the Timer interrupt flag, and
to the A/D buffer.

The list of values under the column labeled

PORTB are **8-bit values** that will be applied to all **eight pins** of PORTB at the times entered down the left column.

The next column is a list for a signal connected to the

•Timer0 interrupt flag,

an internal register.

The two columns on the right allow the

•A/D buffer

to be set to a sequence of 10-bit values.

	SCL Work	book - [Untitle	d]			
E	Pin / Re		Advan	ced Pin / Register C	ock Stimulus Regi	ster Injection Register Trac	e
	Define T	riggers —					
	Enable	Condition	Туре	Re-Arm Delay	Click h	ere to Add Signals	
							-
	Define C	onditions					
	Condition		V	/hen	Wait	Comments	^
	COND1	Any					
							_
	Į						~

The second tab in the SCL Workbook, the **Advanced Pin/Register** tab, provides **conditional control** over events.

SCL W	orkbook -	[Untitle	ed]					
Pin / Re	gister Action	s Advan	iced Pin / Re	egister (Clock Stim	ulus Rej	gister Injection Register Tra	е
Defin	e Triggers—							
Enabl	e Condition	п Туре	Re-Arm D	elay	PORTD		Click here to Add Signals	
	COND1	1x			55			
								~
-				- 1				Ľ
Defin	e Conditions							
Condi	ion	\	√hen		1	√ait	Comments	^
COND	1 Pin	CCP1	-	C		2 us	strobe CCP pin	
								_
								~

Here a **condition** must occur before the stimulus is activated.

The condition is described in the bottom section.

The condition is gating the event to happen

•2 microseconds after pin CCP1 goes low.

When that occurs, a value of **55** will be applied to **PORTB**.

SCL Wo	rkbook -	С:\\р	robetest	1.sbs				
Pin / Reg	ister Action:	Advan	iced Pin / R	legister	Clock Stin	nulus Re	gister Injection Register Trace	•
Define	Triggers-							
Enable	Condition	Туре	Re-Arm [Delay	PORTB	INT1	Click here to Add Signals	^
	COND1	1x			55	0		
	COND2	Cont	10	us	10	1		
								~
Define	Conditions							
Conditio	on		When			Wait	Comments	~
COND1	Pin	CCP1	-		0	2 us	strobe CCP pin	=
COND2	SFR	TMR2	-	8	4			

Other events can be described on subsequent lines.

The event can be a "**1x**" event, which means that it will occur only **once**, or it can be a **Continuous** event, meaning that will happen **every time** the associated condition occurs.

Here a second event happens each time TMR2 reaches a value of 84.

When this happens, **PORTB** will change to a value of **10**, and the **INT1** pin will go **high**.

There is a 10 microsecond **re-arm delay**. This prevents this event from happening **sooner** than 10 microseconds after its last firing.

SCL Wor	kbook - (l	Intitled]							.]0
Pin / Regis	ter Actions	Advanced F		Clock	Stimulus	Register	Injection	Register Trace]
Label	Pin	Initial	Low Cyc	High Cyc	Begin	End	Comme	nts	^
<u> </u>									_
-									
Denia					E u d				~
() Ala	Jaus					ever			
OPC	=		✓ hex/	label	OP	= [V hex	/label
ОСу	sle =		decimal			vole =		decimal	
() Pin	=	V is		~	OPi	n =		🗸 is	~

The **Clock Stimulus** tab of the SCL Workbook generates **repeating digital waveforms**.

	키면
Pin / Register Actions Advanced Pin / Register Clock Stimulus Register Injection Register Trace	3
Label Pin Initial Low Cyc High Cyc Begin End Comments	-
iStrobe RA5 Low 10 15 Always Never continuous pu	lse
mDetect RA6 Low 100 150 PC = test PC = done rotor detect	=
ZPrime RC0 High 2 50 INT1 is Law INT1 is High int series	
IProbe RL3 Low 3 30 1000 cyc 1800 cyc burst	~
K	>
Begin	
⊖Always ⊖ Never	
⊙ PC = test v hex/label ⊙ PC = done v he	k/label
OCycle = 1500 decimal OCycle = 1800 decimal	
OPin = INT1 v is Low v OPin = INT1 v is High	

Four waveforms are entered here.

The first called iStrobe

•holds the RA5 pin low for 10 instruction cycles, then

•goes high for 15 instruction cycles.

•It starts immediately, and never stops.

A **Comments** column and the **Label** column are user-defined labels for this dialog, and are free-form, allowing any text entry. The label is arbitrary, simply for tagging the lines in this dialog with a descriptive name.

Line two describes a waveform that will be applied to RA6.

•RA6 will start out low,

•stay low for 100 cycles,

•then go high for 150 cycles.

•It will not start until the program counter reaches the routine called "test."

•It will begin cycling and

•will stop when the program counter reaches a routine labeled "done."

Line three describes a stimulus event depending upon the **INT1** level. When INT1 goes low the signal on **RC0** goes low for 2 cycles then high for 50 cycles. It will continue cycling until **INT1** goes high.

The last line generates a signal on

•RC3 that starts low,

•stays low for 3 cycles,

•then goes high for **30 cycles**.

•It starts this operation only after 1500 cycles have elapsed since the program was reset, and

•will stop 1800 cycles after the program started, being active for only those 300 cycles.

The last two tabs, Register Injection and Register Trace will be used in the following example.

For this next example, **two waveforms** will be **added** together and sent out **PORTB**, possibly to go to a Digital to Analog converter.

The diagram represents the **two waveforms** on the **left** being applied to to **A/D pins** of the **microcontroller** chip in the **middle**.

The **8 Pins** from **PORTB** go out to some device that will convert them back into analog signals.

This is the entire program that will be used to add the two waves that are coming in to the A/D converter from two pins, then output that sum to PORTB.

Here is just the essential code from the main routine.

The code executes in this infinite loop, alternately getting inputs from pins AN0 and AN1.

Line 2 looks at bit 3 of ADCON0 to see whether AN0 or AN1 was used in the last conversion, and switches to the alternate input pin.

The A/D conversion is started by

•setting bit 3, the GO bit in ADCON0,

•then a **delay** is needed to allow conversion time before reading.

The first wave is read in from ANO, and stored in the variable named input0.

The next time through the loop, the "else" clause will execute, and

•input0 will be added to

•the A/D signal from AN1 and

•sent out PORTB.

MICROCHIP WebSeminars	Code: Add Two Waves Input File	
	C:\\waves.txt 1 100 2 66 3 102 4 60 5 103 6 5 7 105 8 9 107 10 44 11 109 12 13 10 14 35 15 17 14 30 17 14 30 17 114 18 20 21 117 22 18 10 21 117 22 18 10 21 117 22 18 21 117 22	

A **source file** is made up containing the values for the waves being applied to the two A/D pins

SCL W	orkb	ook - C:\	\waves.	sbs				_	
Pin / Re	gister.	Actions A	Advanced Pin	/ Register	Careford Regis	ter Injection	Register T	race	
Label		Register	Trigger	PC Value	Data Filename	Rewind	Format	Comn	^
wave	comb	ADRESL	Demand		waves.txt	Yes	Dec	(optio	
									∃
<				1111				>	*

The register injection tab of the SCL workbook allows us to set up the A/D conversion register to receive it's input from the data file, named waves.txt.

The number will be

•interpreted as decimal values,

•will rewind -starting over when the end of the file is reached-

•and the values will be sent to the A/D conversion register **on demand**.

This means that each time the A/D conversion register is read by our program, the next value in the file will be used.

SCL Wor	kbook - C	1 Iwaves.	sbs				
Pin / Regis	ter Actions	Advanced Pir	/Register	Clock Stimulus Reg	\rightarrow	Register Trace	1
Label	Register	Trigger	PC Value	Trace Filename	Format	Comments	^
(optional	PORTB	Demand		portbwave.txt	Dec	(optional)	
							=
							_
							_
							<u> </u>

In order to validate that the code is working, we use the **Register Trace** tab of the SCL workbook

and set **PORTB** to be logged **on demand**, in other words, each time it is **written** to.

The values will be sent as decimal number to the file named **PORTWAVES.TXT**.

Now we generate the SCL file by compiling...<click>

	(Code: Add Two Waves Attach SCL File										
	Stimulus Cont	roller - C:\\	waves.sto	;		-						
-	Stimulus (SOL) Fi											
	c:\unco18\exian	ple/example1/wa	iveo.ool	_								
	Atach	Detach	Inpat/We	n De								
	Agenchronous St	neks										
	File Pin	Action	Width	Units	Commento		^					
						Deletera	Dev					
	1			C and								
				2.8/1	Lorenado Lor	resp						

...then open the **Stimulus Controller** and attach our SCL files.

Now we can **run** the application.

After stopping the application, we have the results of our log in the file named **PORTWAVES.Txt**.

We can open the file to look at it, then paste the values into a program like **MATLAB** or **Excel** to **graph** the wave.

This has been a short demonstration of some of the powers of **MPLAB SIM** in conjunction with the C compilers, MPLAB C30 and MPLAB C18..

Currently the high speed and extensive peripheral simulation extend to the **PIC18** and **dsPIC** microcontrollers. The **dsPIC** family has one additional stimulus feature: the ability to use printf() statements from **MPLAB C30** to log output files. With printf() logging, reports can be generated with **precise formatting**, and with **complex data types**.

All Microchip Technology microcontrollers are simulated in MPLAB, but only the PIC18 and dsPIC devices have these complex stimulus features, high simulation speed and extensive peripheral simulation.

As this web seminar is being developed, **MPLAB v6.60** is the latest release. This **new simulation technology** is being tested in the **PIC10/12/16** series microcontrollers, and the printf() feature is being added to **MPLAB C18**.

Be prepared to see the simulator get turbo-charged when these are implemented in future versions of MPLAB IDE and the MPLAB C18 compiler.

To recap the features of MPLAB SIM:

MPLAB SIM and MPLAB are available **free** for download from **www.microchip.com**.

It supports all current PICmicros and dsPIC microcontrollers made by Microchip Technology, and as new processors are developed, MPLAB SIM is extended to support them.

MPLAB SIM simulates the CPU core, the various memory areas, many peripherals and the pins of the microcontroller.

MPLAB's debugger functions use MPLAB as one of several debug engines to test code. The other debug engines are in-circuit emulators and in-circuit debuggers.

MPLAB SIM can accurately measure code timing using the Stopwatch or the time stamp feature of the Trace Buffer.

Stimulus signals can be applied to pins and registers. These signals can be triggered manually, can be set up as lists of events, can be repetitive waveforms, and can be activated by complex conditions.

And did we say that you can download **MPLAB IDE** which includes **MPLAB SIM** and all these features **free** from the Microchip Web site?

Thank you for your time.