
Energy-Aware Deterministic Fault Tolerance in Distributed
Real-Time Embedded Systems*

Ying Zhang
Electrical and Computer Engineering

Duke University
Durham, NC 27708, USA
yingzh@ee.duke.edu

Robert Dick
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208, USA

dickrp@ece.northwestern.edu

Krishnendu Chakrabarty
Electrical and Computer Engineering

Duke University
Durham, NC 27708, USA

krish@ee.duke.edu

ABSTRACT

We investigate a unified approach for fault tolerance and

dynamic power management in distributed real-time embedded

systems. Coordinated checkpointing is used to achieve fault

tolerance, and power management is carried out using dynamic

voltage scaling. We present feasibility-of-scheduling tests for

coordinated checkpointing schemes for a constant processor

speed as well as for DVS-enabled processors that can operate at

variable speeds. Simulation results based on the CORDS

hardware/software co-synthesis system show that, compared to

fault-oblivious methods, the proposed approach significantly

reduces power consumption while guaranteeing timely task

completion in the presence of faults.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Testing, and

Fault-Tolerance

General Terms

Algorithms, Performance, Design, Reliability

Keywords

Real-time systems, fault tolerance, checkpointing, voltage scaling.

1. INTRODUCTION*

 Fault tolerance techniques are needed to ensure the

dependability of embedded systems that operate in harsh

environmental conditions. Tolerance to transient faults is

especially important due to reduced noise margins caused by

lower supply voltages. In addition, embedded systems are often

energy-constrained and they are frequently used for hard real-time

applications, which require strict adherence to task deadlines.

 Many real-time systems consist of a distributed system of

embedded processors. In this paper, we investigate a unified app-

* The work of Y. Zhang and K. Chakrabarty was sponsored in part by

DARPA, and administered by the Army Research Office under Emergent

Surveillance Plexus MURI Award No. DAAD19-01-1-0504.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

DAC 2004, June 7-11, 2004, San Diego, California, USA

Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

roach that provides fault tolerance and dynamic power

management (DPM) in distributed real-time embedded systems.

The proposed approach provides deterministic guarantees on the

timely completion of tasks despite the occurrences of transient

faults.

 Dynamic voltage scaling (DVS) is a popular technique for

reducing power consumption [1]. Fault tolerance can be achieved

in embedded systems through checkpointing [2]. At each

checkpoint, the system saves its state in a secure device. When a

fault is detected, the system rolls back to the most recent

checkpoint and resumes normal execution. The checkpointing

interval, i.e., duration between two consecutive checkpoints, must

be carefully chosen to balance checkpointing cost with the re-

execution time.

 A number of techniques have been presented in the literature

on scheduling real-time tasks for DVS-enabled uniprocessor

systems under fault-free conditions [1]. The problem of fault

tolerance in distributed systems has also received attention [3, 4].

Dynamic power management in distributed embedded systems

has recently emerged as an active research area. DVS has been

applied to distributed real-time systems in which the inter-job

communication cost is assumed to be zero. Some DVS techniques

also consider communication costs [5]. However, none of the

above papers address fault tolerance and power management in

conjunction for distributed real-time embedded systems. While

the combination of checkpointing and DVS has recently been

proposed for energy-aware fault tolerance in real-time embedded

systems [2], these techniques are restricted to uniprocessor

systems.

 We first present feasibility-of-scheduling tests for distributed

real-time task sets when checkpointing is carried out for constant

processor speed. The real-time application is modeled using a

directed acyclic graph (DAG). Following this, we extend these

feasibility tests to DVS-enabled variable-speed processors.

 The contributions of this paper are as follows. First, it

introduces the concept of k-fault-tolerance in distributed real-time

systems and presents a deterministic fault-tolerant scheme.

Second, it achieves global system consistency and saves fault-

recovery time through coordinated checkpointing in distributed

real-time systems. Finally, it investigates the relationships

between fault tolerance and dynamic power management.

2. CHECKPOINTING IN DISTRIBUTED

SYSTEMS

 In this section, we describe previously proposed

checkpointing methods, and choose an appropriate checkpointing

scheme for distributed real-time systems.

33.2

550

 tA

PA

PB

M
S

tB

t1

t2

����
����
����
����
tf

CA

CB

tA

PA

PB

M

S’

tB

t1

t2

���
���
���
���

tf

CA

CB

(a) Consistent state: t1 < tA < tf. (b) Inconsistent state: tA < t1 < tf.

Figure 1: Consistent and inconsistent states.

S

tf

P 0

P 1

P 2

����
����
����

t0 t0+ T T

Figure 2: Synchronized checkpointing.

2.1 Consistent System States

 In a message-passing system, it is critical to maintain the state

consistency of the system. The global state of a message-passing

system is a collection of the individual states of all processors and

communication channels [6]. A consistent system is one in which,

if the checkpointing state of a processor reflects a message

receipt, then the checkpointing state of the corresponding sender

processor indicates that the message has been sent out [7].

 Consider a system of two processors A and B, and suppose

both processors perform local checkpointing to store individual

states. In the event of a fault, the system uses checkpoints from

both processors to determine a global state. Suppose processor A

sends a message M to processor B at time t1 and B receives it at

time t2 (t1 < t2). Meanwhile, processor A takes a checkpoint CA at

tA, and processor B takes a checkpoint CB at tB, after t2. Assume a

fault occurs at tf after tB.

 In Figure 1(a), t1 < tA < tf, and the global state is S. The content

of CA indicates that message M has been sent to processor B,

which is consistent with the actual communication precedence.

Hence, S is a consistent state. In Figure 1(b), tA < t1 < tf, and the

global state is S’. The content of CA indicates that message M has

not yet been sent to processor B. However, as mentioned earlier,

the state of CB reflects the receipt of the message M from A.

According to the global state S’ composed of CA and CB, an

apparent discrepancy emerges: message M is received by

processor B without being sent by processor A. Thus S’ is an

inconsistent state.

 Inconsistent states result in wasted checkpoint cost and they

incur unnecessary recovery time. The worst possible scenario is

that all processors have to roll back to the beginning of the

program and restart execution. This phenomenon is called the

Domino Effect [6]. Restoring a consistent global state when faults

cause inconsistencies is a critical problem in the design of reliable

distributed systems.

2.2 Uncoordinated vs. Coordinated

Checkpointing for Ensuring Consistency

 In uncoordinated checkpointing [6], a processor decides when

to make a checkpoint without dependence on the other processors.

Processors record dependencies among the checkpoints during the

fault-free execution. Once a fault occurs in a processor, this

processor broadcasts a dependency-request message. Upon receipt

of the dependency request, each processor stops execution and

replies with the local dependency information. The initiator then

calculates the most-recent consistent global checkpoint (defined

as the recovery line) based on the received data and broadcasts a

rollback request message containing the recovery line. A

processor whose current state belongs to the recovery line

resumes execution; otherwise, it rolls back to the checkpoint

indicated by the recovery line. Uncoordinated checkpointing is

susceptible to the Domino Effect; moreover, checkpoints that will

never be part of a global consistent state can be taken, and each

processor needs to maintain multiple checkpoints.

 In coordinated checkpointing [6], processors cooperate to

form a consistent global state. Synchronized coordination, which

has relatively small protocol overhead, uses a global

synchronization signal, i.e., a coarse-grained or fine-grained clock,

to trigger the local checkpointing actions at the same time instead

of waiting for a request from an initiator; all processors take

checkpoints at predefined times according to the global clock.

Note that this synchronization signal may (and should) have a

frequency dramatically lower than the local clock frequencies of

the individual processors, minimizing its power consumption and

preserving the assumption of continuous local time, i.e., there are

many local clock ticks between subsequent checkpoints. Figure 2

shows an example of synchronized checkpointing. Starting from

time t0, all processors take checkpoints simultaneously and

periodically based on a global clock with a checkpointing period

of T. Once a fault occurs at time tf in processor P2, the consistent

state S is formed as follows: P1 and P2 roll back to their most

recent checkpoints because a message was sent from P2 to P1 after

the last checkpointing operation, while P0 remains at its current

state since no dependency exists between P0 and the other two

processors. Synchronized checkpointing is easy to implement and

cost-effective. Hence, we use this technique for fault tolerance in

distributed real-time systems.

3. FEASIBILITY ANALYSIS UNDER

CONSTANT SPEED

 In this section, we present feasibility analysis based on

synchronized checkpointing under constant processor speed.

 Given an embedded system specification, a hardware-software

co-synthesis system [8] solves the following three problems under

fault-free conditions: (1) allocation of the resources composed of

processing elements (PEs) and communication links; (2)

assignment of jobs or communications on different PEs/links; and

(3) task scheduling. Both the scheduling problem and the

allocation/assignment problem are NP-complete for distributed

systems [9]. To handle problem complexity, we start with a valid

resource allocation, task assignment, and schedule produced

under the assumption fault-free conditions.

 We are given a program modeled by a DAG: G = (V, E). The

system is composed of PEs and communication links. All timing

parameters for the DAG are based on a global common

clock. However, the operational frequency of each PE need not

necessarily be the same as the global clock, i.e., the global clock

can be used for global synchronization without forcing all PEs to

551

(0 , 4 , 5)

(7 , 3 , 1 1) (6 , 2 , 1 0)

3

3 2

2

(1 2 , 5 , 2 0)

Figure 3: Program modeled by a DAG.

operate at its frequency. Information about distributed system

topology, allocation of PEs and communication links, and task

assignment is obtained through a system-level synthesis tool such

as CORDS [8]. After mapping the DAG to the underlying system

and scheduling the jobs (performed by the synthesis tool), each

job vi is modeled by a three-tuple (ai, ti, di), where ai is the arrival

time, ti is the fault-free computation time, and di is the deadline.

Edge eij represents a message sent from vi to vj with

communication cost cij. Figure 3 shows a program modeled by a

DAG.

 We assume that at most k faults can occur in the system

before the maximum deadline over all tasks. The time to store

(retrieve) a checkpoint is cw (cr). A fault occurring at one PE does

not affect the other PEs. The PEs in the system employ

synchronized checkpointing to achieve global consistent state,

i.e., all PEs take checkpoints simultaneously under a global clock.

The checkpointing interval is ∆. Finally, we assume that the

protocol overhead is negligible compared to the typical values of

execution time of real-time jobs. This assumption is reasonable

because only extremely short protocol-specific messages need to

be transmitted.

 Based on the properties of synchronized checkpointing, we

make the following key observations:

(1) For a uniprocessor system, the maximum time penalty for one

fault is σ = ∆+cw+cr.

(2) For a message-passing system that employs a global clock to

save checkpoints every ∆ units of time, each fault incurs the

maximum time penalty σ; i.e., any job whose execution suffers

one fault will be delayed by at most σ.

 Our goal here is to determine whether the program can be

completed using the checkpointing interval ∆ without violating its

timing constraints, even if k faults occur during program

execution.

 As an example, consider a real-time program composed of

three jobs v1, v2, and v3. These jobs are assigned to three PEs, as

illustrated in Figure 4. Each job vi is modeled by the tuple (ai, ti,

di).

 We now examine all the jobs and see if they can meet the

timing constraints in the presence of k faults during the execution

of each job. These k faults can occur at any time either before or

during the execution of vi.

1) For job v1: the worst-case finish time in the presence of k faults

can be expressed as:

./)(1111 ∆+++= wctktakwcft σ (1)

 In this expression, (a1+t1) represents the finish time under

fault-free conditions, kσ represents the time penalty due to

rollback recovery in the presence of k faults, and t1cw/∆ represents

the checkpointing cost.

 If ,)(11 dkwcft ≤ v1 can be completed before its deadline in

the presence of k faults. It is straightforward to see that)(1 kwcft

is a monotonically increasing function of k, a property that we

exploit in subsequent analysis.

2) For job v2: the worst-case finish time in the presence of k faults

can be expressed as:

./)(},)(max{)(212212112 ∆+−+++= wctnktacnwcftkwcft σ

Let ∆+−+= /)()(21212 wctnktng σ

and .)()(121111 cnwcftnf += This gives us:

).()),(max()(122112 nganfkwcft += (2)

 Next we divide the k possible faults into two parts: n1 (n1≤ k)

faults that occur before the execution of v2, and (k – n1) faults that

occur during the execution of v2. For the first group of n1 faults, it

is easy to verify that no matter how these n1 faults are distributed

between execution and communication, the worst-case time for

message c12 to arrive at PE2 is .)(1211 cnwcft + Therefore, we

need not distinguish between faults during execution and faults

during communication in the remaining analysis.

 It still remains to distribute the k fault occurrences such that

the worst-case scenario for v2 is obtained in order to ensure that

the deadline will be met in this case. Based on Equation (2) we

have three mutually-exclusive cases.

Case 1: .)(2121 ackwcft ≤+ This is illustrated in Figure 5.

 Since)(1 kwcft is a monotonically-increasing function of k,

we have: .)()()(2121121111 ackwcftcnwcftnf ≤+≤+= Hence

,}),(max{ 2211 aanf = and).()(1222 ngakwcft +=

 It is shown in Figure 5 that the line segment f1(n1) =

wcft1(n1)+c12 (0 ≤ n1 ≤ k) always lies below the line corresponding

to h(n1) = a1, while the position of g2(n1) relative to h(n1) is

arbitrary. Obviously, the maximum value of)(2 kwcft is obtained

when n1 = 0. This means that, in the worst case, all k faults occur

during the execution of v2. It can, therefore, be concluded that

).0()(222 gakwcft +=

 In this case,)(2 kwcft is independent of).(11 nwcft This

follows from the observation that, as long as n1 ≤ k, the execution

of v1 does not affect the actual starting time of v2 (see Figure 6).

Case 2: .)0(2121 acwcft ≥+ We now have:

.)0()()(2121121111 acwcftcnwcftnf ≥+≥+=

Hence).()),(max(11211 nfanf =

 It is shown in Figure 7 that the line segment f1(n1) =

wcft1(n1)+c12 (0 ≤ n1 ≤ k) lies above the line h(n1) = a1, while the

position of g2(n1) relative to h(n1) is arbitrary. Now we have:

./)()(

)()()(

2121211

12112

∆+−+++=
+=

wctnktcnwcft

ngnfkwcft

σ

 According to Equation (1), we have:

./)(

/)(

)/()(

2121211

212

1211112

∆++++++=
∆+−++
+∆+++=

w

w

w

cttktcta

ctnkt

cctntakwcft

σ
σ

σ

 We make the interesting observation here that the value of

)(2 kwcft is independent of n1. From a mathematical perspective,

552

c12

a 1

a 2

v2

v1

t2

v3

c23 a 3

t3

t1

P E 1

P E 2

P E 3

Figure 4: A program composed of three jobs.

h (n 1) = a 2

a 2 + g 2 (n 1)

g 2 (n 1)

n 1
 k

f 1 (n 1) = w c f t 1 (n 1) + c 1 2

Figure 5: Case 1 corresponding to .)(2121 ackwcft ≤+

a 1

a 2

v2

v1
P E 1

P E 2

w cft1(n 1)

c12

w cft1(n 1)+ c12

Figure 6: Explanation for Case 1.

n 1

h (n 1) = a 2

k

g 2 (n 1)

β

β

f 1 (n 1) = w c f t 1 (n 1) + c 1 2

w c f t 1 (n 1) + c 1 2 + g 2 (n 1)

Figure 7: Case 2 corresponding to .)0(2121 acwcft ≥+

a 1

a 2

v2

v1
P E 1

P E 2

w cft1(n 1)

c12

w cft1(n 1)+ c12

Figure 8: Explanation for Case 2.

β

β

g 2 (n 1)

h (n 1) = a 2

f 1 (n 1) = w c f t 1 (n 1) + c 1 2

n 1

k
 n

*

Figure 9: Case 3 corresponding to wcft1(0)+c12 < a2

<wcft1(k)+c12.

this is because the slopes of g2(n1) and f1(n1) are equal in

magnitude but opposite in sign (as indicated in Figure 7:β =tg-1σ).

Therefore, their sum is independent of n1. This can also be

explained as follows. When ,)(211 anf ≥ the time when the

message from job v1 is received by job v2 is always later than the

arrival time of v2. Since v1’s execution is overlapped with v2’s

arrival time, we cannot tell whether the delay for v2 is caused by

fault occurrences during v1 or during v2. As a result,)(2 kwcft is

independent of n1. This is shown in Figure 8, where the two faults

have the same effect on the delay in the execution of v2.

 Based on this property, we can further express)(2 kwcft as:

).0()0()(212 gfkwcft +=

Case 3: ;)()0(1212121 ckwcftacwcft +<<+ see Figure 9.

 In this case, depending on the value of n1,)(11 nf can either

be greater or less than a2. It is shown in Figure 9 that the line

segment f1(n1) = wcft1(n1)+c12 (0 ≤ n1 ≤ k) has an intersection point

with the line h(n1) = a1, while the position of g2(n1) relative to

h(n1) is arbitrary. Now we determine the value of n1 to maximize

).(2 kwcft

 First, we solve the equation ,)(2
*

1 anf = and get the value of

*n , as indicated in Figure 9. Next, we divide n1 into two intervals

based on *n , obtain two local maxima separately, and choose the

greater one as the global maximum. Consider the two cases

below.

i)),0[*
1 nn ∈ .

 We have .)()()(212
*

1121111 acnwcftcnwcftnf =+<+=

Hence ,}),(max{ 2211 aanf = and).()(1222 ngakwcft +=

 Similar to the case in Figure 5, the maximum value of

)(2 kwcft is obtained when n1= 0. In addition, ,0 *
1 nn ≤= and

this also satisfies the initial condition of).,0[*
1 nn ∈ This means

that all k faults occur during v2. Consequently, we have

)0()(222 gakwcft += and we denote it by).(1
2 kwcft

ii)],[*
1 knn ∈

 We have .)()()(212
*

1121111 acnwcftcnwcftnf =+≥+=

Hence, max{f1(n1), a2}=f1(n1), and wcft2(k)= f1(n1) + g2(n1).

Similar to the case in Figure 7, the value of)(2 kwcft is

independent of n1. Consequently,),0()0()(212 gfkwcft += and

denote it by).(2
2 kwcft Now that we have two local maxima, the

greater one is chosen as the global maximum:

)}0()0(),0(max{

)}(),(max{)(

2122

2
2

1
22

gfga

kwcftkwcftkwcft

++=
=

 According to the pre-specified condition for Case 3,

,)()0(1212121 ckwcftacwcft +<<+ which is equivalent to

).()0(121 kfaf << We further simplify the above expression as:

).0()}0()0(),0(max{)(2221222 gagfgakwcft +=++=

 This expression is the same as the one in Case 1, hence we

can merge Case 1 with Case 3 using a single expression.

553

Procedure Chkp (G, ∆, k)
1. Perform topological-sort until G is traversed {

2. for each vj ∈ pred(vi) , Do {
3. calculate wcfti(k, vj);
4. if (wcfti(k , vj) > di)
5. exit(“Cannot tolerate k faults”);
6. }
7. }
8. return(“Feasible under k faults”)

Figure 10: Procedure for feasibility analysis of a DAG.

Procedure Eng_Chkp

1. Calculate fault-free timing parameters

 (ai, ti) under fl for each vj ∈ V;
2. Find the appropriate checkpointing

 interval ∆ using binary search;
3. Perform voltage scaling according to the criterion C.

Figure 11: Procedure for energy-aware checkpointing.

a3 = 7 a1 = 4 a2 = 8

3
2

wcfti* = 1

d i = 4

4

v i

Figure 12: Illustrative example for voltage scaling.

 To summarize, the worst-case scenario for v2 depends on the

relationship between v1’s completion time and v2’s arrival time.

We combine all these cases as follows:




+
≥++=

otherwise.),0(

)0(if),0()0(
)(

22

212121
2

ga

acwcftgf
kwcft

3) For job v3: the worst-case finish time in the presence of k faults

can be expressed as

./)(},)(max{)(323323223 ∆+−+++= wctnktacnwcftkwcft σ

Let ∆+−+= /)()(32323 wctnktng σ and .)()(232222 cnwcftnf +=

Then).(}),(max{)(233223 nganfkwcft += We again divide the

k faults into two parts: n2 (n2 ≤ k) faults that occur before the

execution of v3 and (k – n2) faults that occur during the execution

of v3. By employing the same method used for job v2, we obtain:




+
≥++=

otherwise.),0(

)0(if),0()0(
)(

33

323232
3

ga

acwcftgf
kwcft

4. FEASIBILITY TEST

 In this section, we present an algorithm to analyze the

feasibility of a real-time program running on a message-passing

distributed system. Our goal is to determine whether the program

can be completed with a checkpointing interval of ∆ without

violating its timing constraints in the presence of up to k faults

during execution.

 We first state results that follow directly from the analysis in

Section 3.2. The proofs are omitted due to lack of space.

Lemma 1: For the source job (a job without any predecessors)

denoted by v1, the corresponding worst-case finish time in the

presence of k faults can be expressed as

./)(1111 ∆+++= wctktakwcft σ

Lemma 2: For a job vi, let the set of its predecessor jobs be

pred(vi). Let ∆+−+= /)()(wijiji ctnktng σ and

.)()(jijjjj cnwcftnf += For each vj ∈ pred(vi), there is a

corresponding wcftij(k, vj) for vi, which denotes the worst-case

finish time determined by vj in the presence of k faults. The

parameter wcftij(k, vj) can be expressed as


 +

≥++=
otherwise.),0(

)0(if),0()0(
),(

ii

ijijij

jij
ga

acwcftgf
vkwcft

Theorem 1: Job vi can be completed in the presence of k faults if

and only if iijjijj dvpredvvkwcft ≤∈)}(|),({max .

We next define the worst-case finish time implied by the

worst-case finish times of all predecessors:

)}.(|),({max*
ijjijji vpredvvkwcftwcft ∈= (3)

Theorem 2: Let G = (V, E) be the DAG corresponding to a real-

time program. This program is feasible in the presence of k faults

if and only if ., *
iii dwcftVv ≤∈∀

 Based on the above theorems, we now describe the algorithm

for analyzing the feasibility of a DAG in the presence of k faults

under synchronized checkpointing. The pseudocode for the

procedure is described in Figure 10. The complexity for our

algorithm is O(|V|+|E|).

5. INCORPORATING DVS

 In this section, we extend the results of Section 3 by

considering DVS-capable processors. We are given a variable-

speed processor, which is equipped with l speeds f1, f2, …, fl. In

addition, fi < fj if i < j. Our goal is to find an appropriate

checkpointing interval ∆ and appropriate speed assignment for

each job to save energy. To simplify the problem, we assume that

the checkpointing interval ∆ can be chosen from [Itvmin, Itvmax].

Here Itvmin is constrained by the minimum clock period, and Itvmax

is constrained by the limits imposed by the program deadline.

 The procedure Eng_chkp for energy-aware fault tolerance is

summarized in Figure 11. First, we assign the maximum speed fl

to all processors and calculate the fault-free timing parameters,

including arrival time and execution time. Next, we employ a

binary-search based technique to choose the appropriate

checkpointing interval ∆ for the system under the highest

processor speed fl. The successors of each job vi ∈ V are denoted

by succ(vi). Based on the results obtained under the highest

processor speed fl, we compare each job’s worst-case finish time

(denoted by **
iwcft) with its successor’s arrival time, and perform

voltage scaling according to criterion C as defined below:

Criterion C:

(1) If)},(|{min**
ijijjji vsuccvcawcft ∈−≥ do not scale down

the speed, i.e., processor clock frequency, and voltage of vi;

(2) If)},(|{min**
ijijjji vsuccvcawcft ∈−< scale down the

speed and voltage of vi to the lowest speed s(i) ∈ { f1, f2, …, fl}

such that vi completes before its deadline di, or before the time

)}(|{min ijijjj vsuccvca ∈− whichever is sooner.

 Figure 12 shows an illustrative example.

554

Table 1: Feasibility and checkpointing intervals.

Proposed method
Benchmark

No. of

faults (k)

Fault-oblivious

method: feasible? Feasible? ∆ (ms)

1 No Yes 903.5

2 No Yes 363.5

3 No Yes 273.5

4 No Yes 183.5

Automotive/

industrial

(B1)

5 No Yes 93.5

1 No Yes 36.1 Consumer

(B2) 2 No Yes 17.6

1 No Yes 82.4 Network

(B3) 2 No Yes 39.3

1 Yes Yes 23.2

2 No Yes 11.2

Office

automation

(B4) 3 No Yes 7.2

1 No Yes 13.0 Telecom

(B5) 2 No Yes 4.0

Table 2: Degree of fault tolerance and energy consumption for

B4.

Scheme Checkpointing? DVS? No. of faults

tolerated

Energy (mJ)

S1 No No 1 150.2

S2 Yes No 3 152.3

S3 No Yes 1 130.2

S4 Yes Yes 3 132.4

Since ,2)}(|{min1**
iijijjji dvsuccvcawcft <=∈−<= we scale

down the speed of vi by choosing the lowest possible speed that

makes vi complete before time t = 2.

6. SIMULATION RESULTS

 In this section, we first demonstrate how the proposed

checkpointing scheme can provide fault tolerance in distributed

real-time systems. Following this, we show how energy saving

can be achieved by employing DVS in combination with

checkpointing.

 We use the E3S benchmark set [10] for our experiments. The

benchmarks are based on the Embedded Microprocessor

Benchmark Consortium (EEMBC) and include tasks in the

application domains of automotive systems, telecommunications,

and consumer electronics [11].

 Based on previous work [12], we assume that the time to read

or write a checkpoint of size 5 KB is 0.4 ms. The results for the

E3S-based benchmarks under constant processor speed are shown

in Table 1. Procedure Chkp is able to find an appropriate value of ∆ in each case. When ∆ is set as shown in the table, the proposed

scheme with synchronized checkpointing guarantees that all hard

deadlines will be met in the presence of up to k faults. We have

also compared our method with the fault-oblivious method

without checkpointing. Simulations show that our proposed

method outperforms the fault-oblivious method. For instance, our

method can guarantee the timely completion of the

automotive/industrial benchmark (B1) when up to 5 faults occur

while the fault-oblivious method cannot complete on time when

any faults occur during execution.

 We next show how the checkpointing scheme combined with

DVS can achieve energy saving while guaranteeing real-time

responsiveness in the presence of faults. We consider 4 schemes

in our simulation: (1) without checkpointing and DVS (S1), (2)

with checkpointing but without DVS (S2), (3) without

checkpointing and with DVS (S3), and (4) with checkpointing and

DVS (S4). The degree of fault tolerance and energy consumption

for the office-automation benchmark (B4) is shown in Table 2. We

consider the AMD K6 processor in our simulation. First, we note

that the proposed checkpointing schemes improve the degree of

fault tolerance. As seen from Table 2, S2 and S4 can tolerate more

faults than S1 and S3. Second, as expected, DVS saves energy in a

distributed real-time embedded system. S3 (S4) achieves a 13.3%

reduction in energy consumption compared to S1 (S2). Finally, the

energy cost of incorporating checkpointing is negligible compared

to the increase in fault tolerance, as seen from the comparison

between S1 and S2, as well as S3 and S4.

7. CONCLUSIONS

 We have shown how deterministic fault tolerance can be

achieved in conjunction with dynamic power management in

distributed real-time embedded systems. Deterministic fault

tolerance is achieved via synchronized checkpointing. Power

management is carried out using DVS. We have presented

feasibility analysis for checkpointing schemes under constant

processor speed. The proposed checkpointing scheme has then

been combined with DVS to reduce energy consumption without

violating deadline constraints in the presence of transient faults.

8. REFERENCES

[1] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for

real-time systems on variable voltage processors”, Proc. DAC, pp.

828-833, 2001.

[2] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive

checkpointing in embedded real-time systems”, Proc. DATE, pp.

918-923, 2003.

[3] L. Li et al, “Adaptive error protection for energy efficiency”, Proc.

ICCAD, pp. 2-7, 2003.

[4] D. Marculescu et al., “Fault-tolerant techniques for ambient

intelligent distributed systems”, Proc. ICCAD, pp. 348-355, 2003.

[5] J. Liu et al., “Communication speed selection for embedded systems

with networked voltage-scalable processors”, Proc. CODES, pp.

169-174, 2002.

[6] E. N. Elnozahy et al., “A survey of rollback-recovery protocols in

message-passing systems”, ACM Computing Surveys, vol. 34, pp.

375-408, September 2002.

[7] M. Chandy and L. Lamport, “Distributed snapshots: Determining

global states of distributed systems”, ACM Transactions on

Computer Systems, pp. 63-75, February 1985.

[8] R. P. Dick and N. K. Jha, “CORDS: Hardware-Software Co-

Synthesis of Reconfigurable Real-Time Distributed Embedded

Systems”, Proc. ICCAD, pp. 62-68, 1998.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W. H. Freeman, New

York, NY, 1979.

[10] Embedded System Synthesis Benchmarks Suite (E3S):

http://www.ece.northwestern.edu/~dickrp/e3s/.

[11] Embedded Microprocessor Benchmark Consortium (EEMBC):

http://www.eembc.org.

[12] C.-Y. Lin et al., “A checkpointing tool for Palm operating system”,

Proc. DSN, pp. 71-76, 2001.

555

