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ABSTRACT 

We investigate a unified approach for fault tolerance and 

dynamic power management in distributed real-time embedded 

systems. Coordinated checkpointing is used to achieve fault 

tolerance, and power management is carried out using dynamic 

voltage scaling. We present feasibility-of-scheduling tests for 

coordinated checkpointing schemes for a constant processor 

speed as well as for DVS-enabled processors that can operate at 

variable speeds. Simulation results based on the CORDS 

hardware/software co-synthesis system show that, compared to 

fault-oblivious methods, the proposed approach significantly 

reduces power consumption while guaranteeing timely task 

completion in the presence of faults.  

Categories and Subject Descriptors 

B.8.1 [Performance and Reliability]:  Reliability, Testing, and 

Fault-Tolerance  

General Terms 

Algorithms, Performance, Design, Reliability 

Keywords 

Real-time systems, fault tolerance, checkpointing, voltage scaling. 

1. INTRODUCTION* 

      Fault tolerance techniques are needed to ensure the 

dependability of embedded systems that operate in harsh 

environmental conditions. Tolerance to transient faults is 

especially important due to reduced noise margins caused by 

lower supply voltages. In addition, embedded systems are often 

energy-constrained and they are frequently used for hard real-time 

applications, which require strict adherence to task deadlines. 

      Many real-time systems consist of a distributed system of 

embedded processors. In this paper, we investigate a unified app- 
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roach that provides fault tolerance and dynamic power 

management (DPM) in distributed real-time embedded systems. 

The proposed approach provides deterministic guarantees on the 

timely completion of tasks despite the occurrences of transient 

faults. 

      Dynamic voltage scaling (DVS) is a popular technique for 

reducing power consumption [1]. Fault tolerance can be achieved 

in embedded systems through checkpointing [2]. At each 

checkpoint, the system saves its state in a secure device. When a 

fault is detected, the system rolls back to the most recent 

checkpoint and resumes normal execution. The checkpointing 

interval, i.e., duration between two consecutive checkpoints, must 

be carefully chosen to balance checkpointing cost with the re-

execution time. 

      A number of techniques have been presented in the literature 

on scheduling real-time tasks for DVS-enabled uniprocessor 

systems under fault-free conditions [1]. The problem of fault 

tolerance in distributed systems has also received attention [3, 4]. 

Dynamic power management in distributed embedded systems 

has recently emerged as an active research area. DVS has been 

applied to distributed real-time systems in which the inter-job 

communication cost is assumed to be zero. Some DVS techniques 

also consider communication costs [5]. However, none of the 

above papers address fault tolerance and power management in 

conjunction for distributed real-time embedded systems. While 

the combination of checkpointing and DVS has recently been 

proposed for energy-aware fault tolerance in real-time embedded 

systems [2], these techniques are restricted to uniprocessor 

systems. 

      We first present feasibility-of-scheduling tests for distributed 

real-time task sets when checkpointing is carried out for constant 

processor speed. The real-time application is modeled using a 

directed acyclic graph (DAG). Following this, we extend these 

feasibility tests to DVS-enabled variable-speed processors. 

      The contributions of this paper are as follows. First, it 

introduces the concept of k-fault-tolerance in distributed real-time 

systems and presents a deterministic fault-tolerant scheme. 

Second, it achieves global system consistency and saves fault-

recovery time through coordinated checkpointing in distributed 

real-time systems. Finally, it investigates the relationships 

between fault tolerance and dynamic power management. 

2. CHECKPOINTING IN DISTRIBUTED 

SYSTEMS 

      In this section, we describe previously proposed 

checkpointing methods, and choose an appropriate checkpointing 

scheme for distributed real-time systems. 
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(a) Consistent state: t1 < tA < tf.     (b) Inconsistent state: tA < t1 < tf. 

Figure 1: Consistent and inconsistent states. 
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Figure 2: Synchronized checkpointing. 

2.1 Consistent System States 

      In a message-passing system, it is critical to maintain the state 

consistency of the system. The global state of a message-passing 

system is a collection of the individual states of all processors and 

communication channels [6]. A consistent system is one in which, 

if the checkpointing state of a processor reflects a message 

receipt, then the checkpointing state of the corresponding sender 

processor indicates that the message has been sent out [7]. 

      Consider a system of two processors A and B, and suppose 

both processors perform local checkpointing to store individual 

states. In the event of a fault, the system uses checkpoints from 

both processors to determine a global state. Suppose processor A 

sends a message M to processor B at time t1 and B receives it at 

time t2 (t1 < t2). Meanwhile, processor A takes a checkpoint CA at 

tA, and processor B takes a checkpoint CB at tB, after t2. Assume a 

fault occurs at tf after tB. 

      In Figure 1(a), t1 < tA < tf, and the global state is S. The content 

of CA indicates that message M has been sent to processor B, 

which is consistent with the actual communication precedence. 

Hence, S is a consistent state. In Figure 1(b), tA < t1 < tf, and the 

global state is S’. The content of CA indicates that message M has 

not yet been sent to processor B. However, as mentioned earlier, 

the state of CB reflects the receipt of the message M from A. 

According to the global state S’ composed of CA and CB, an 

apparent discrepancy emerges: message M is received by 

processor B without being sent by processor A. Thus S’ is an 

inconsistent state. 

      Inconsistent states result in wasted checkpoint cost and they 

incur unnecessary recovery time. The worst possible scenario is 

that all processors have to roll back to the beginning of the 

program and restart execution. This phenomenon is called the 

Domino Effect [6]. Restoring a consistent global state when faults 

cause inconsistencies is a critical problem in the design of reliable 

distributed systems. 

2.2 Uncoordinated vs. Coordinated 

Checkpointing for Ensuring Consistency 

      In uncoordinated checkpointing [6], a processor decides when  

to make a checkpoint without dependence on the other processors. 

Processors record dependencies among the checkpoints during the 

fault-free execution. Once a fault occurs in a processor, this 

processor broadcasts a dependency-request message. Upon receipt 

of the dependency request, each processor stops execution and 

replies with the local dependency information. The initiator then 

calculates the most-recent consistent global checkpoint (defined 

as the recovery line) based on the received data and broadcasts a 

rollback request message containing the recovery line. A 

processor whose current state belongs to the recovery line 

resumes execution; otherwise, it rolls back to the checkpoint 

indicated by the recovery line. Uncoordinated checkpointing is 

susceptible to the Domino Effect; moreover, checkpoints that will 

never be part of a global consistent state can be taken, and each 

processor needs to maintain multiple checkpoints. 

      In coordinated checkpointing [6], processors cooperate to 

form a consistent global state. Synchronized coordination, which 

has relatively small protocol overhead, uses a global 

synchronization signal, i.e., a coarse-grained or fine-grained clock, 

to trigger the local checkpointing actions at the same time instead 

of waiting for a request from an initiator; all processors take 

checkpoints at predefined times according to the global clock. 

Note that this synchronization signal may (and should) have a 

frequency dramatically lower than the local clock frequencies of 

the individual processors, minimizing its power consumption and 

preserving the assumption of continuous local time, i.e., there are 

many local clock ticks between subsequent checkpoints. Figure 2 

shows an example of synchronized checkpointing. Starting from 

time t0, all processors take checkpoints simultaneously and 

periodically based on a global clock with a checkpointing period 

of T. Once a fault occurs at time tf in processor P2, the consistent 

state S is formed as follows: P1 and P2 roll back to their most 

recent checkpoints because a message was sent from P2 to P1 after 

the last checkpointing operation, while P0 remains at its current 

state since no dependency exists between P0 and the other two 

processors. Synchronized checkpointing is easy to implement and 

cost-effective. Hence, we use this technique for fault tolerance in 

distributed real-time systems.  

3. FEASIBILITY ANALYSIS UNDER 

CONSTANT SPEED 

      In this section, we present feasibility analysis based on 

synchronized checkpointing under constant processor speed. 

      Given an embedded system specification, a hardware-software 

co-synthesis system [8] solves the following three problems under 

fault-free conditions: (1) allocation of the resources composed of 

processing elements (PEs) and communication links; (2) 

assignment of jobs or communications on different PEs/links; and 

(3) task scheduling. Both the scheduling problem and the 

allocation/assignment problem are NP-complete for distributed 

systems [9]. To handle problem complexity, we start with a valid 

resource allocation, task assignment, and schedule produced 

under the assumption fault-free conditions. 

      We are given a program modeled by a DAG: G = (V, E). The 

system is composed of PEs and communication links. All timing 

parameters for the DAG are based on a global common 

clock. However, the operational frequency of each PE need not 

necessarily be the same as the global clock, i.e., the global clock 

can be used for global synchronization without forcing all PEs to  
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Figure 3: Program modeled by a DAG. 

operate at its frequency. Information about distributed system 

topology, allocation of PEs and communication links, and task 

assignment is obtained through a system-level synthesis tool such 

as CORDS [8]. After mapping the DAG to the underlying system 

and scheduling the jobs (performed by the synthesis tool), each 

job vi is modeled by a three-tuple (ai, ti, di), where ai is the arrival 

time, ti is the fault-free computation time, and di is the deadline. 

Edge eij represents a message sent from vi to vj with 

communication cost cij. Figure 3 shows a program modeled by a 

DAG. 

      We assume that at most k faults can occur in the system 

before the maximum deadline over all tasks. The time to store 

(retrieve) a checkpoint is cw (cr). A fault occurring at one PE does 

not affect the other PEs. The PEs in the system employ 

synchronized checkpointing to achieve global consistent state, 

i.e., all PEs take checkpoints simultaneously under a global clock. 

The checkpointing interval is ∆. Finally, we assume that the 

protocol overhead is negligible compared to the typical values of 

execution time of real-time jobs. This assumption is reasonable 

because only extremely short protocol-specific messages need to 

be transmitted. 

      Based on the properties of synchronized checkpointing, we 

make the following key observations: 

(1) For a uniprocessor system, the maximum time penalty for one 

fault is σ = ∆+cw+cr. 

(2) For a message-passing system that employs a global clock to 

save checkpoints every ∆ units of time, each fault incurs the 

maximum time penalty σ; i.e., any job whose execution suffers 

one fault will be delayed by at most σ.  

      Our goal here is to determine whether the program can be 

completed using the checkpointing interval ∆ without violating its 

timing constraints, even if k faults occur during program 

execution.  

      As an example, consider a real-time program composed of 

three jobs v1, v2, and v3. These jobs are assigned to three PEs, as 

illustrated in Figure 4. Each job vi is modeled by the tuple (ai, ti, 

di). 

      We now examine all the jobs and see if they can meet the 

timing constraints in the presence of k faults during the execution 

of each job. These k faults can occur at any time either before or 

during the execution of vi. 

1) For job v1: the worst-case finish time in the presence of k faults 

can be expressed as:  

./)( 1111 ∆+++= wctktakwcft σ                                              (1)  

      In this expression, (a1+t1) represents the finish time under 

fault-free conditions, kσ represents the time penalty due to 

rollback recovery in the presence of k faults, and t1cw/∆ represents 

the checkpointing cost.  

      If ,)( 11 dkwcft ≤  v1 can be completed before its deadline in 

the presence of k faults. It is straightforward to see that )(1 kwcft  

is a monotonically increasing function of k, a property that we 

exploit in subsequent analysis. 

2) For job v2: the worst-case finish time in the presence of k faults 

can be expressed as:  

./)(},)(max{)( 212212112 ∆+−+++= wctnktacnwcftkwcft σ  

Let ∆+−+= /)()( 21212 wctnktng σ  

and .)()( 121111 cnwcftnf +=  This gives us: 

).()),(max()( 122112 nganfkwcft +=                                       (2) 

      Next we divide the k possible faults into two parts: n1 (n1≤ k) 

faults that occur before the execution of v2, and (k – n1) faults that 

occur during the execution of v2. For the first group of n1 faults, it 

is easy to verify that no matter how these n1 faults are distributed 

between execution and communication, the worst-case time for 

message c12 to arrive at PE2 is .)( 1211 cnwcft +  Therefore, we 

need not distinguish between faults during execution and faults 

during communication in the remaining analysis. 

      It still remains to distribute the k fault occurrences such that 

the worst-case scenario for v2 is obtained in order to ensure that 

the deadline will be met in this case. Based on Equation (2) we 

have three mutually-exclusive cases.  

Case 1: .)( 2121 ackwcft ≤+  This is illustrated in Figure 5.  

      Since )(1 kwcft  is a monotonically-increasing function of k, 

we have: .)()()( 2121121111 ackwcftcnwcftnf ≤+≤+=  Hence  

,}),(max{ 2211 aanf =  and ).()( 1222 ngakwcft +=  

      It is shown in Figure 5 that the line segment f1(n1) = 

wcft1(n1)+c12 (0 ≤ n1 ≤ k) always lies below the line corresponding 

to h(n1) = a1, while the position of g2(n1) relative to h(n1) is 

arbitrary. Obviously, the maximum value of )(2 kwcft  is obtained 

when n1 = 0. This means that, in the worst case, all k faults occur 

during the execution of v2. It can, therefore, be concluded that 

).0()( 222 gakwcft +=  

      In this case, )(2 kwcft  is independent of ).( 11 nwcft  This 

follows from the observation that, as long as n1 ≤ k, the execution 

of v1 does not affect the actual starting time of v2 (see Figure 6). 

Case 2: .)0( 2121 acwcft ≥+  We now have:  

.)0()()( 2121121111 acwcftcnwcftnf ≥+≥+=  

Hence ).()),(max( 11211 nfanf =  

      It is shown in Figure 7 that the line segment f1(n1) = 

wcft1(n1)+c12 (0 ≤ n1 ≤ k) lies above the line h(n1) = a1, while the 

position of g2(n1) relative to h(n1) is arbitrary. Now we have:  

./)()(

)()()(

2121211

12112

∆+−+++=
+=

wctnktcnwcft

ngnfkwcft

σ       

      According to Equation (1), we have: 

./)(

/)(

)/()(

2121211

212

1211112

∆++++++=
∆+−++
+∆+++=

w

w

w

cttktcta

ctnkt

cctntakwcft

σ
σ

σ
 

      We make the interesting observation here that the value of 

)(2 kwcft is independent of n1. From a mathematical perspective,  
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Figure 4: A program composed of three jobs. 

h (n 1 ) = a 2
 

a 2 +  g 2 (n 1 )
 

g 2 ( n 1 )
 

n 1
 k

 

f 1 ( n 1 ) = w c f t 1 ( n 1 ) +  c 1 2
 

 

Figure 5: Case 1 corresponding to .)( 2121 ackwcft ≤+  
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Figure 6: Explanation for Case 1. 
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Figure 7: Case 2 corresponding to .)0( 2121 acwcft ≥+  
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Figure 8: Explanation for Case 2. 
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Figure 9: Case 3 corresponding to wcft1(0)+c12 < a2 

<wcft1(k)+c12. 

this is because the slopes of g2(n1) and f1(n1) are equal in 

magnitude but opposite in sign (as indicated in Figure 7:β =tg-1σ). 

Therefore, their sum is independent of n1. This can also be 

explained as follows. When ,)( 211 anf ≥  the time when the 

message from job v1 is received by job v2 is always later than the 

arrival time of v2. Since v1’s execution is overlapped with v2’s 

arrival time, we cannot tell whether the delay for v2 is caused by 

fault occurrences during v1 or during v2. As a result, )(2 kwcft is 

independent of n1. This is shown in Figure 8, where the two faults 

have the same effect on the delay in the execution of v2. 

      Based on this property, we can further express )(2 kwcft as: 

).0()0()( 212 gfkwcft +=    

Case 3: ;)()0( 1212121 ckwcftacwcft +<<+  see Figure 9.  

      In this case, depending on the value of n1, )( 11 nf can either 

be greater or less than a2. It is shown in Figure 9 that the line 

segment f1(n1) = wcft1(n1)+c12 (0 ≤ n1 ≤ k) has an intersection point 

with the line h(n1) = a1, while the position of g2(n1) relative to 

h(n1) is arbitrary. Now we determine the value of n1 to maximize 

).(2 kwcft  

      First, we solve the equation ,)( 2
*

1 anf =  and get the value of 

*n , as indicated in Figure 9. Next, we divide n1 into two intervals 

based on *n , obtain two local maxima separately, and choose the 

greater one as the global maximum. Consider the two cases 

below. 

i) ),0[ *
1 nn ∈ . 

      We have .)()()( 212
*

1121111 acnwcftcnwcftnf =+<+=  

Hence ,}),(max{ 2211 aanf =  and ).()( 1222 ngakwcft +=  

      Similar to the case in Figure 5, the maximum value of 

)(2 kwcft  is obtained when n1= 0. In addition, ,0 *
1 nn ≤=  and 

this also satisfies the initial condition of ).,0[ *
1 nn ∈  This means 

that all k faults occur during v2. Consequently, we have 

)0()( 222 gakwcft += and we denote it by ).(1
2 kwcft  

ii) ],[ *
1 knn ∈  

      We have .)()()( 212
*

1121111 acnwcftcnwcftnf =+≥+=  

Hence, max{f1(n1), a2}=f1(n1), and wcft2(k)= f1(n1) + g2(n1). 

Similar to the case in Figure 7, the value of )(2 kwcft  is 

independent of n1. Consequently, ),0()0()( 212 gfkwcft +=  and 

denote it by ).(2
2 kwcft Now that we have two local maxima, the 

greater one is chosen as the global maximum: 

)}0()0(),0(max{

)}(),(max{)(

2122

2
2

1
22

gfga

kwcftkwcftkwcft

++=
=

 

      According to the pre-specified condition for Case 3, 

,)()0( 1212121 ckwcftacwcft +<<+  which is equivalent to 

).()0( 121 kfaf <<  We further simplify the above expression as: 

).0()}0()0(),0(max{)( 2221222 gagfgakwcft +=++=  

      This expression is the same as the one in Case 1, hence we 

can merge Case 1 with Case 3 using a single expression. 

553



Procedure Chkp (G, ∆, k) 
1. Perform topological-sort until G is traversed { 

2.    for each vj ∈ pred(vi) , Do { 
3.              calculate wcfti(k, vj); 
4.              if (wcfti(k , vj) > di)  
5.              exit(“Cannot tolerate k faults”); 
6.    } 
7. } 
8. return(“Feasible under k faults”)   

 

Figure 10: Procedure for feasibility analysis of a DAG. 

Procedure Eng_Chkp 

1. Calculate fault-free timing parameters 

      (ai, ti) under fl for each vj ∈ V; 
2. Find the appropriate checkpointing 

             interval ∆ using binary search; 
3. Perform voltage scaling according to the criterion C. 

 

Figure 11: Procedure for energy-aware checkpointing. 
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Figure 12: Illustrative example for voltage scaling. 

      To summarize, the worst-case scenario for v2 depends on the 

relationship between v1’s completion time and v2’s arrival time. 

We combine all these cases as follows: 




+
≥++=

otherwise.),0(

)0(if),0()0(
)(

22

212121
2

ga

acwcftgf
kwcft  

3) For job v3: the worst-case finish time in the presence of k faults 

can be expressed as 

./)(},)(max{)( 323323223 ∆+−+++= wctnktacnwcftkwcft σ  

Let ∆+−+= /)()( 32323 wctnktng σ  and .)()( 232222 cnwcftnf +=  

Then ).(}),(max{)( 233223 nganfkwcft +=  We again divide the 

k faults into two parts: n2 (n2 ≤ k) faults that occur before the 

execution of v3 and (k – n2) faults that occur during the execution 

of v3. By employing the same method used for job v2, we obtain: 




+
≥++=

otherwise.),0(

)0(if),0()0(
)(

33

323232
3

ga

acwcftgf
kwcft  

4. FEASIBILITY TEST 

      In this section, we present an algorithm to analyze the 

feasibility of a real-time program running on a message-passing 

distributed system. Our goal is to determine whether the program 

can be completed with a checkpointing interval of ∆ without 

violating its timing constraints in the presence of up to k faults 

during execution.  

      We first state results that follow directly from the analysis in 

Section 3.2. The proofs are omitted due to lack of space. 

Lemma 1: For the source job (a job without any predecessors) 

denoted by v1, the corresponding worst-case finish time in the 

presence of k faults can be expressed as 

./)( 1111 ∆+++= wctktakwcft σ  

Lemma 2: For a job vi, let the set of its predecessor jobs be 

pred(vi). Let ∆+−+= /)()( wijiji ctnktng σ  and 

.)()( jijjjj cnwcftnf +=  For each vj ∈ pred(vi), there is a 

corresponding wcftij(k, vj) for vi, which denotes the worst-case 

finish time determined by vj in the presence of k faults. The 

parameter wcftij(k, vj)  can be expressed as 


 +

≥++=
otherwise.),0(

)0(if),0()0(
),(

ii

ijijij

jij
ga

acwcftgf
vkwcft  

Theorem 1: Job vi can be completed in the presence of k faults if 

and only if iijjijj dvpredvvkwcft ≤∈ )}(|),({max .   

We next define the worst-case finish time implied by the 

worst-case finish times of all predecessors: 

)}.(|),({max*
ijjijji vpredvvkwcftwcft ∈=                             (3) 

Theorem 2: Let G = (V, E) be the DAG corresponding to a real-

time program. This program is feasible in the presence of k faults 

if and only if ., *
iii dwcftVv ≤∈∀  

      Based on the above theorems, we now describe the algorithm 

for analyzing the feasibility of a DAG in the presence of k faults 

under synchronized checkpointing. The pseudocode for the 

procedure is described in Figure 10. The complexity for our 

algorithm is O(|V|+|E|). 

5. INCORPORATING DVS 

      In this section, we extend the results of Section 3 by 

considering DVS-capable processors. We are given a variable-

speed processor, which is equipped with l speeds f1, f2, …, fl. In 

addition, fi < fj if i < j. Our goal is to find an appropriate 

checkpointing interval ∆ and appropriate speed assignment for 

each job to save energy. To simplify the problem, we assume that 

the checkpointing interval ∆ can be chosen from [Itvmin, Itvmax]. 

Here Itvmin is constrained by the minimum clock period, and Itvmax 

is constrained by the limits imposed by the program deadline. 

      The procedure Eng_chkp for energy-aware fault tolerance is 

summarized in Figure 11. First, we assign the maximum speed fl 

to all processors and calculate the fault-free timing parameters, 

including arrival time and execution time. Next, we employ a 

binary-search based technique to choose the appropriate 

checkpointing interval ∆ for the system under the highest 

processor speed fl. The successors of each job vi ∈ V are denoted 

by succ(vi). Based on the results obtained under the highest 

processor speed fl, we compare each job’s worst-case finish time 

(denoted by **
iwcft ) with its successor’s arrival time, and perform 

voltage scaling according to criterion C as defined below: 

Criterion C: 

(1) If )},(|{min**
ijijjji vsuccvcawcft ∈−≥  do not scale down 

the speed, i.e., processor clock frequency, and voltage of vi; 

(2) If )},(|{min**
ijijjji vsuccvcawcft ∈−<  scale down the 

speed and voltage of vi to the lowest speed s(i) ∈ { f1, f2, …, fl} 

such that  vi completes before its deadline di, or before the time 

)}(|{min ijijjj vsuccvca ∈−  whichever is sooner. 

      Figure 12 shows an illustrative example. 
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Table 1: Feasibility and checkpointing intervals. 

Proposed method 
Benchmark 

No. of 

faults (k) 

Fault-oblivious 

method: feasible? Feasible? ∆ (ms) 

1 No Yes 903.5 

2 No Yes 363.5 

3 No Yes 273.5 

4 No Yes 183.5 

Automotive/ 

industrial  

(B1) 

5 No Yes 93.5 

1 No Yes 36.1 Consumer 

(B2) 2 No Yes 17.6 

1 No Yes 82.4 Network  

(B3) 2 No Yes 39.3 

1 Yes Yes 23.2 

2 No Yes 11.2 

Office 

automation 

(B4) 3 No Yes 7.2 

1 No Yes 13.0 Telecom 

(B5) 2 No Yes 4.0 

 

Table 2: Degree of fault tolerance and energy consumption for 

B4. 

Scheme Checkpointing? DVS? No. of faults 

tolerated 

Energy (mJ) 

S1 No No 1 150.2 

S2 Yes No 3 152.3 

S3 No Yes 1 130.2 

S4 Yes Yes 3 132.4 

 

Since ,2)}(|{min1**
iijijjji dvsuccvcawcft <=∈−<= we scale 

down the speed of vi by choosing the lowest possible speed that 

makes vi complete before time t = 2. 

6. SIMULATION RESULTS 

      In this section, we first demonstrate how the proposed 

checkpointing scheme can provide fault tolerance in distributed 

real-time systems. Following this, we show how energy saving 

can be achieved by employing DVS in combination with 

checkpointing. 

      We use the E3S benchmark set [10] for our experiments. The 

benchmarks are based on the Embedded Microprocessor 

Benchmark Consortium (EEMBC) and include tasks in the 

application domains of automotive systems, telecommunications, 

and consumer electronics [11]. 

     Based on previous work [12], we assume that the time to read 

or write a checkpoint of size 5 KB is 0.4 ms. The results for the 

E3S-based benchmarks under constant processor speed are shown 

in Table 1. Procedure Chkp is able to find an appropriate value of ∆ in each case. When ∆ is set as shown in the table, the proposed 

scheme with synchronized checkpointing guarantees that all hard 

deadlines will be met in the presence of up to k faults. We have 

also compared our method with the fault-oblivious method 

without checkpointing. Simulations show that our proposed 

method outperforms the fault-oblivious method. For instance, our 

method can guarantee the timely completion of the 

automotive/industrial benchmark (B1) when up to 5 faults occur 

while the fault-oblivious method cannot complete on time when 

any faults occur during execution. 

      We next show how the checkpointing scheme combined with 

DVS can achieve energy saving while guaranteeing real-time 

responsiveness in the presence of faults. We consider 4 schemes 

in our simulation: (1) without checkpointing and DVS (S1), (2) 

with checkpointing but without DVS (S2), (3) without 

checkpointing and with DVS (S3), and (4) with checkpointing and 

DVS (S4). The degree of fault tolerance and energy consumption 

for the office-automation benchmark (B4) is shown in Table 2. We 

consider the AMD K6 processor in our simulation. First, we note 

that the proposed checkpointing schemes improve the degree of 

fault tolerance. As seen from Table 2, S2 and S4 can tolerate more 

faults than S1 and S3. Second, as expected, DVS saves energy in a 

distributed real-time embedded system. S3 (S4) achieves a 13.3% 

reduction in energy consumption compared to S1 (S2). Finally, the 

energy cost of incorporating checkpointing is negligible compared 

to the increase in fault tolerance, as seen from the comparison 

between S1 and S2, as well as S3 and S4. 

7. CONCLUSIONS 

      We have shown how deterministic fault tolerance can be 

achieved in conjunction with dynamic power management in 

distributed real-time embedded systems. Deterministic fault 

tolerance is achieved via synchronized checkpointing. Power 

management is carried out using DVS. We have presented 

feasibility analysis for checkpointing schemes under constant 

processor speed. The proposed checkpointing scheme has then 

been combined with DVS to reduce energy consumption without 

violating deadline constraints in the presence of transient faults. 
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