
SEA: Fast power estimation for micro-architectures

Praveen Kalla† Jörg Henkel Xiaobo Sharon Hu†

Dept. of Computer Sci. and Engg. NECCCRL Dept. of Computer Sci. and Engg.
University of Notre Dame Princeton, NJ-08540, USA University of Notre Dame

NotreDame, IN - 46556, USA. e-mail: henkel@nec-lab.com NotreDame, IN - 46556, USA
e-mail: nkalla@cse.nd.edu e-mail: shu@cse.nd.edu

Abstract— Various approaches for micro-architectural power/
energy estimation have been introduced, mainly driven by the
need to obtain fast power/energy estimates during early phases
of complex SOC designs. In contrast to previous approaches we
study power/energy estimation for highly optimized synthesizable
description of microprocessor cores. Under this real-world design
scenario, we found, unlike related previous research, that power
can hardly be estimated closer than around 15% using an instruc-
tion level model. However, we can estimate theenergyas close
as 5%. Our research has resulted in the SEA framework that
estimates energy/power consumed by a software program, tak-
ing specific micro-architectural features of the underlying pro-
grammable hardware core into consideration. With this high ac-
curacy in energy estimation we achieve around 5 orders of mag-
nitude faster estimations compared to state-of-the art high-level
(RTL) commercial energy/power estimation tool suites. Thus,
our framework is capable of reliably estimating the energy/power
consumption of future complex SOCs.

I. I NTRODUCTION

IP-based design methodologies combined with the paradigm
of platforms for specific application areas have enabled design-
ers to design new multi-million gate designs in shorter times
and at an overall smaller man-month count compared to tradi-
tional design method that do not extensively re-use existing IP.
Examples of design platforms stem from domains like multi-
media processing, wireless communications, real-time control,
etc. The task of a designer has changed to integrating and es-
timating various scenarios of a future complex SOC by means
of re-using existing IP and design platforms.

A high-level power estimation method should preferably
have the following features:

1) The model should be able to estimate on a per-cycle
basis to allow sufficient accuracy.

2) The model should be independent of access and
switching activities as they can hardly be predicted
from an instruction-level abstraction point of view.
This holds especially for highly optimized processor
designs that are coded in a mixed behavioral-RTL and
structural-RTL fashion.

In this paper we provide an approach according to these
constraints and under the assumption that the processor design
might not allow for functional clock gating , i.e., clock gating
that allows RTL blocks at almost any size to be gated, which
is true for many real-world processor designs which rigorously
mix functional and structural RTL. Block-based power estima-
tion approaches might not be applicable in such cases.

Our model is based on the observations made by studying
the optimized synthesizable RTL code of the MicroSparcIIep

†This work is supported in part by NSF under grant numbers MIP-9701416
and CCR02-08992.

[25]. Our approach estimatesenergywithin an accuracy of 5%
and per-cyclepowerwithin 15% or less on an average.

A review of existing models is given in Sec. II. Our power
model is introduced in Sec. III and IV. The SEA framework
is discussed in Sec. V. Experiments and results are shown in
Sec. VI with our conclusions in Sec. VII.

II. REVIEW OF EXISTING POWER MODELS

A large number of approaches have been proposed for power
estimation in recent years. We classify them as follows:

Module-based approachesview the power consumption of
a core as a sum of the power consumption of the structural
modules present in the core. Modeling the power behavior of
these individual units provides the energy consumed every cy-
cle by the core. [2, 4] present such power estimators which
estimate theactivity factors, area, capacitance, etc. for mod-
ules present in the core. [7] highlights the differences between
these estimators and the difficulty in estimating accurate activ-
ity factors. [23] present SimplePower which is another such
estimator based on the SimpleScalar tool suite [3]. Another
estimator for SH3 is presented in [21]. [10] attempts a slightly
broader classification of the core asdatapath, control logic,
etc. Such models require an in-depth knowledge of the archi-
tecture and the implementation, which, however, are not often
provided by the IP providers. Further, modules in highly opti-
mized IP cores can have complex operation inter-dependencies
which make module partitioning difficult.

Instruction-based approachesabstract away the low-level
details needed by the module-based models above. The energy
consumption of the core is captured by assigning power/energy
values to each instruction of the instruction set. The first of
such approaches has been presented in [22]. The power behav-
ior of each instruction is captured by executing the instruction
in a loop and measuring the current drawn by the chip. Us-
ing a measurement-based approach helps account for (physi-
cal) packaging issues, but it is difficult to back-annotate the
system-level loading to the activities on the pins of the chip.
Furthermore, the process of measuring the average currentac-
curately is a relatively complex and error-prone process [12].
More importantly, a SoC designer generally needs to obtain
energy/power databeforethe chip is taped out.

In [8], each instruction ispropagatedalong a gate-level net
list for accurate energy estimation which is relatively time-
consuming. Many models are proposed by studying the var-
ious aspects of instructions that might effect the core, such as
data, operands, etc. [18] attempts to capture data related ef-
fects throughactivity indices. Another data-related study is
presented in [5].Energy-sensitivefactors are studied in [6]
and a regression based analysis is presented in [11]. Another
model is presented in [20] which is based on classifying the
execution cycles into different types. Most of these models



IU FPU

Cache
Controller

ca
ch

e_
fill

Dc
 &

 Ic
ta

g 
da

ta

Dc
 &

 Ic
bl

k 
da

ta

In
st

_b
us

ica
ch

e_
ad

dr

da
ta

_b
us

iu_store_data fpu_ld/store_data

inst_for_fpu
misc

Caches

MMU

MemIF

Mem_data_out

PCIC

Mem_data_in
PCI_address_in
Interrupts

PCI_address_out

PromIF

ROM_addr_out
Mem_addr

b_mem_data_out
pc_ab_out

b_mem_data_in

addr_select

cache_fill

misc

Fig. 1. Block diagram of the MicroSparcIIep synthesizable RTL core

are either based on the observations made for physical chips
rather than IP cores (see the paragraph above), or still require
the knowledge of the design and implementation.

Function-based approachesprovide a yet higher abstrac-
tion for power estimation. Works like [1, 16, 17] abstract the
processor as a set offunctions or stages. Behavior of various
physical modules is captured by these abstract quantities. A
technique for capturing these activities throughperformance
countersis presented in [9]. Some processors might not offer
such functionality and in some cases, it might not be possible
to monitor certain power events accurately. A yet higher level
of abstraction is capturing the power behavior forlibrary rou-
tines [14]. The primary difficulty with such an approach is to
capture the statistical run-time behavior of these libraries ac-
curately (the cache misses, etc.). At the most abstract level,
the processor can be treated as a black box. [19] presents a
cycle-level estimator where an ARM processor is assigned two
states, active and nop-waiting. The power values for both states
are taken from datasheets. Another such model is presented in
[15]. Such a coarse treatment may not be applicable to a IP
core and might lead to imprecise estimates.

As a summary, some previous approaches have either
made simplified assumptions and do not model the micro-
architecture in sufficient detail; or, the models are very de-
tailed but the assumptions of the micro-architecture are rather
un-realistic since a highly-optimized micro-architecturecan-
not be modeled as a set of RTL blocks that are either active or
non-active. In fact, RTL blocks might dissipate energy during
a certain time frame even though a functional simulation does
not suggest so. Hence, the idealistic assumption of module-
based gated-clock designs is not in compliance with optimized
micro-architectures that actually unveil a mixture of structural
and behavioral RTL.

The approach we take is to incorporate as many details as
possible to extract from an optimized synthesizable RTL de-
scription. This inhibits not only the decomposition into blocks,
but it may lead to a partly unpredictable energy/power behav-
ior. Overall, however, we canguaranteean upper and lower
bound for the estimatedpowerthat is typically in the range of
15% and around 5% accuracy forenergyestimates.

III. D ERIVING AND REFINING AN INSTRUCTION-BASED
ENERGY/POWER MODEL

To derive the power/energy models for IP cores, we use a
publicly available, synthesizable model of the MicroSparcIIep
core [25] as an example. Employing a commercial core allows
us to study many architectural features that typically do not ap-
pear in simple processor models constructed for research pur-
poses only. The block diagram of a MicroSparcIIep is shown in
Fig. 1 [13]. It is a RISC architecture that integrates a SPARC
processor with a floating-point unit (FPU), memory manage-
ment unit (MMU), separate instruction and data caches, and a

PCI bus controller (PCIC) onto a single device.
The synthesizable RTL of the core is highly optimized such

that behavioral and structural RTL are inter-mingled exten-
sively. Further, functional clock-gating had not been imple-
mented. Both these factors prevented the adoption of a block-
based power model as used by some estimation techniques.
Gate-level power estimation is a very time consuming process
and is definitely not recommendable for estimating software
energy. However, for our initial investigation, we synthesized
the core and conducted gate-level simulation in order to verify
some conclusions presented in similar previous work.

Based on extensive detailed experiments, we observe that
the power/energy variations due to architectural characteristics
are quite complex. For example, we note that modules that
are not directly involved in the execution of an instruction can
still contribute significantly in terms of power variation. The
data in Tab. I clearly show this point. Here, the first column
lists pairs of instructions, and the second column summarizes
the corresponding power differences of various modules. The
acronyms used are Core (all modules except caches), IU (in-
teger unit), Ex (execution unit), Rf (register File), CC (cache
controller), MMU (memory management unit), Memif (mem-
ory interface unit). We usex.yto denote thaty is a sub-module
of x. From Tab. I, one can readily see that units such as MMU
and Memif account for a large portion of the total power dif-
ference (e.g., more than 30% forAdd v.s. And), even though
the execution of both instructions is not supposed to involve
the two units. Such behaviors are also observed in the FPU
(especially the floating point register file) during the execution
of integer instructions, which is due to the partial decoding of
all instructions in the FPU. Instructions are later discarded if
they are not FP-instructions.

The intricate dependencies of instruction executions on
functional units make it impossible to model the power con-
sumption of the core by means of a simple module decom-
position. Moreover, even the most complex model would
not accurately estimate the power consumption since many
effects are simply due to the structural RTL coding style of
the core. To overcome these difficulties, we adopt an instruc-
tion level model, capture the various effects through simulation
and store them in a multidimensional database that is accord-
ingly accessed by our estimation framework for estimating the
power/energy consumption of a C program.

Let us first review a basic instruction-based power model
presented in [22] by Tiwari, et al. We then consider the com-
plications of applying it to the MicroSparc core. Through this
exercise, we identify the model’s weakness and propose a mod-
ified model for an efficient power estimation tool. The power
model from [22] is given in (1).

Eprog =
∑

i

(BiNi) +
∑

i,j

(Oi,jNi,j) +
∑

k

Ek (1)

TABLE I
POWER VARIATIONS BETWEEN INSTRUCTION SEQUENCES FOR

DIFFERENT MODULES IN THE CORE.
Instructions Module: Power Difference [mW]
Add vs And Core: 60 IU: 18 IU.Ex: 10

CC: 14 MMU :12 IU.Rf: 8
Memif :10

Add vs Sub Core: 10 IU: 1 IU.Ex: 1.5
MMU: 2

And vs Core: 40 IU: 25 IU.Ex: 13
(Add.And.Sub) CC: 2.3 Memif: 2 IU.Rf: 8

MMU: 2



where,Eprog is the total energy,Bi is the base energy cost for
instructioni, Ni is the number of occurrences of instructioni,
Oi,j is the circuit state overhead for each pair of consecutive in-
structions (i, j), Ni,j , the number of times the pair occurs, and
Ek, the energy contribution of other effects such as pipeline
stalls and cache misses.

Through detailed simulation, we have made the following
observations with respect to the instruction-based model in (1).
(These are further elaborated in Sec. IV)

1) Irrespective of the source of the pipeline stall
(memory-access, register-dependency, etc.), various
modules in the core show quite similar stall power
behavior, which is a direct consequence of the lack
of a block-based clock gating. Therefore, differenti-
ating betweenexecution cyclesandstall cycleswould
be beneficial.

2) Data variations contribute significantly to the power
variation within a single instruction. Thus, a single
average power number may not be sufficient to cap-
ture the power behavior.

3) Inter-instruction effects are difficult to model due to
the large variations within the instruction execution
context. Nonetheless, such effects are overshadowed
by the effect of data variations.

Considering the above observations, we propose a refined
cycle-based, instruction-level energy model. It assumes that
the energy consumed in a certain cycle is induced by the in-
struction that resides in the execution unit at the (clock cycle)
time of interest. The execution of an instructioni, can be bro-
ken down to two parts:nai activecycles andnsi stall cycles.
The stall cycles are assigned the same stall power, no mat-
ter which instruction causes the stall. Multi-cycle instructions
such as“multiply” will have multipleactivecycles. The aver-
age power consumed by instructioni in a cycle,Pavgi , reflects
the average power consumed by the micro-architecture over all
cycles when that instruction is residing in theexecution stage
of the pipeline. Our model is shown in Eqn. 2.

Eprog = ((
∑

i=1:n

Pavginai) + (
∑

i=1:n

nsi) ∗ Pstall) · T (2)

Here,Eprog is the total energy consumed by a software pro-
gram,n is the number of instructions of the instruction trace,
Pavgi is the average power consumed by instructioni, Pstall is
the average stall cycle power, andT is the period of the clock
cycle. Our power database (see Section IV) not only includes
the Pavgi for each instruction, but also the lower and upper
bounds so as to provide various options to the designer.

Use of the model in (2) requires various energy model data.
Since measurement-based techniques as in [22] cannot be em-
ployed for IP cores, we employed simulation to obtain the en-
ergy model data. Each instruction is exposed to various test
cases and a power value is assigned to it. In order to reduce
the number of test cases, the instruction set is partitioned into
classes, and each class is assigned a power value. We clas-
sified the instruction set into memory based and non-memory
based as suggested by our initial gate-level simulations. Then,
we further classified the instructions by whether or not special-
purpose hardware is invoked by the respective instructions and
whether integer or floating point register files were affected.

In contrast to the existing instruction-level models that em-
ploy simulation for obtaining power/energy data, our model

captures the details that can actually be observed at the in-
struction level and abstracts away architectural features whose
power/energy implications are not visible at the instruction
level. Such an approach helps to retain both efficiency and
accuracy of an instruction-level model when dealing with a
highly optimized model of an IP core. We would like to em-
phasize the absence offunctional clock-gatingin many real-
world, highly optimized processor cores due to which certain
architectural details required by previous modeling techniques
are not exposed to the power model. Our discussions in the
next section will further justify the model that we proposed.

IV. BUILDING THE ARCHITECTURAL POWER/ENERGY
DATABASE

The model proposed in (2) requires a power/energy database
for extracting various power data required by the model (e.g.,
Pavgi andPstall). The consideration of architectural character-
istics in conjunction with the optimized design representation
of the MicroSPARCIIep processor core is key for constructing
such a database and hence designing an accurate energy/power
estimation tool. This section discusses the prominent issues to
be resolved for applying the model.

A. Stall energy estimation

Pipeline stalls due to factors such as cache misses and data
dependencies are unavoidable in modern microprocessors. Us-
ing measurements to capture stall energy as in (1) cannot be
easily done. Detailed knowledge of the architecture and the
functionalities of different modules is needed to develop good
test cases for capturing these effects. This knowledge is unfor-
tunately, not readily available for many IP cores.

In [2], idle energy of modules of a CPU is estimated as 10%
of the corresponding active energy. However, the highly opti-
mized synthesizable RTL of the MicroSparcIIep led to a dif-
ferent conclusion. The data presented in Tab. II show that idle
power can contribute to 50% (or even higher) of the average
power consumption of the respective modules.

Such observations suggest that stalls have to be modeled ac-
curately and have to be treated in a way similar to instructions.
This is especially true in control-dominated and reactive ap-
plications that tend to have a higher stall rate. The stall en-
ergy/power of MicroSparcIIep, however, has been observed to
be nearly constant, independent of the kind of stalls. There-
fore, we decompose the total execution cycles of an instruction
into two parts,active cycles andstall cycles and account for
these parts separately in terms of energy/power consumption.
Separating the stall cycles from active cycles decouples vari-
ous power/energy related effects and thus facilitates a precise
and reliable power/energy estimation.

B. Variations through data dependencies

The energy/power consumed in various hardware units of
the processor core depends on, among others, the data that are
processed by a certain instruction. Fig. 2 shows an excerpt of

TABLE II
STALL MODE VS. ACTIVE MODE POWER CONSUMPTION

Pstall Pactive Pstall Pactive
Module [mW] [mW] Module [mW] [mW]
IU.Q 23.524 50 IU.D 17.805 35
IU.Pc 11.924 20 IU.Ex 8.535 30
IU.Hc 204 uW 1.75 W IU 405.32 586.5
CC 20.296 22.5 PromIF 5.47 10.5



0

20

40

branch
or−max

and−max2
and−max1and−no

st−maxst−no
ld−maxld−no

sub−maxsub−incr
sub−noadd−max

add−incradd−no

hold
Exec

Decode
Queue

Pc

[mW]

Fig. 2. Power variation within the Integer Unit IU

measurements (obtained through RT-level estimation): the z-
axis shows the power consumption (in mW), the y-axis shows
the break-down to the most prominent sub-units (RTL mod-
ules) of the IU while the x-axis shows diverse instructions with
altered data. (add-no: anadd instruction being executed with
no alteration of the operands;add-incr: the add instruction
incrementing an operand by 1; andadd-max: the maximum
observed power consumption of theadd instruction by induc-
ing maximum switching activity of the register bits holding the
operands (e.g., a 0-1-0 to 1-0-1 switch of a 3-bit wide regis-
ter)). The data show that some sub-blocks vary significantly in
power consumption whereas others remain more or less con-
stant when data is being altered. Overall, the variations are
quite significant and cannot be ignored.

The variations in the power consumption within an instruc-
tion are important for certain investigations. For example,
the maximum power values are useful for estimating the peak
power, which is a key parameter in studying battery utiliza-
tion efficiency. To facilitate such estimations, we maintain the
maximum, the minimum, and the average power for each in-
struction in the power database. These data can then be used
in (2) to estimate the maximum, minimum and average energy
of the whole core.
C. Inter-instruction effects (IIEs)

The energy/power consumed by an instruction may vary de-
pending on thecontextin which an instruction is executed, i.e.,
the instructions immediately before and after the instruction.
The model in (1) captures these effects by assigning a single
energy value to each pair of instructions and adds such energy
values. However, our detailed simulations show that the inter-
instruction effects (IIEs) are quite complex and the simple ad-
ditive model in (1) is not appropriate.

Tab. III presents the power values for different instruction
sequences. The first two columns are for instruction sequences
containing only a single instruction, the next two columns for
sequences containing two instructions, and so forth. Careful
analysis of the data will show that using the formula in (1)
would produce wrong results. Consider, as an example, a se-
quence ofand-or-sll . The total energy for this sequence

TABLE III
POWER VARIATIONS OF INSTRUCTION SEQUENCES

Instr Pavg Instr Pavg Instr Pavg
Seq [W] Seq. [W] Seq. [W]
Add 1.08 Add.And 0.94 Add.and.sub 1.08
Sll 1.03 Add.Sll 0.93 And.or.sll 1.02

And 1.02 And.Or 0.93 Add.ld.and 1.09
Or 1.03 Or.Sll 0.95 Add.and.sub.or 1.09

C program

GNU

comp./assem/lnk

ModelSim

Sente

Peak/Watt Watcher

comparison

SEA tools

Power data base

generation

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Data

Dependency

Pipeline

Instruct.

Sequence

Power Model

MSparcIIep

RTL
…

Graphical User Interface

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors
Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors
Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

ISS

Object

code

Analyzer

C programC program

GNU

comp./assem/lnk

GNU

comp./assem/lnk

ModelSimModelSim

Sente

Peak/Watt Watcher

Sente

Peak/Watt Watcher

comparison

SEA tools

Power data base

generation

Power data base

generation

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Data

Dependency

Pipeline

Instruct.

Sequence

Data

Dependency

Data

Dependency

PipelinePipeline

Instruct.

Sequence

Instruct.

Sequence

Power Model

MSparcIIep

RTL
…

MSparcIIep

RTL
…

MSparcIIep

RTL
…

Graphical User Interface

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors
Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors
Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Graphical User Interface

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors
Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors
Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

Power data base:

-energy profiles

-Per-cycle profiles

-Prediction errors

ISSISS

Object

code

Object

code

AnalyzerAnalyzer

Fig. 3. Our SEA tool flow (gray underlayed) and third party tools including
ModelSim and Sente

is 1.02× 3 · T = 3.06 · T . However, if using the model in (1),
the energy is computed as

(1.02 + 1.03 + 1.03 − 3 ∗ 0.09) · T = 2.81 · T (3)

(The first three terms are the energy for the three instructions
individually while the fourth term accounts for the IIEs calcu-
lated using the data in the 2nd and 4th columns.) Clearly, the
accumulated IIEs do not correctly model the energy consumed
by the instruction sequence. The data in Tab. III also show that
Pavg hasdecreasedfor 2-instruction sequences andincreased
or remained constantfor 3- and 4-instruction sequences. This
indicates that IIEs between a pair of instructions may not nec-
essarily be constant. Therefore, it is difficult to capture the IIE
between a pair of instructions by a single value.

Our experiments also reveal that the power variations in-
duced by the IIEs are quite small compared to the variations
due to changes in data. Tab. IV illustrates the power variations
due todata andcontext. The power variations under differ-
ent data for an instruction have been shown in Cols. 2-4. The
power variations due to combining that instruction with other
instructions are presented in Cols. 5-7. One can readily see
that the power variations due to IIEs can be ignored.

V. THE SEA POWER ANALYSIS FRAMEWORK

Our SEA framework developed on the basis of our proposed
cycle-based, instruction-level power/energy model, has been
depicted in Fig. 3. SEA performs

1) Accurate estimation of average as well as minimum
and maximum power consumption (on a per-cycle ba-
sis or through the whole application),

TABLE IV
DATA VS IIES

Single Instr. Seq. Two-instr Seq.(Instr.XYZ)
Instr. Min Max Varn. Min Max Varn

[W] [W] [%] [W] [W] [%]
Add 0.85 1.10 29.4 0.93 1.09 17.20
Or 0.72 1.08 50.0 0.93 0.95 2.15
Sll 0.72 1.03 43.1 0.93 0.95 2.15
Ld 0.72 0.96 33.3 1.06 1.09 2.83



2) Accurate estimation of the energy consumed (mini-
mum, maximum, actual), considering the effects of
input stimuli, data dependencies, instruction depen-
dencies and architectural characteristics, and

3) Various statistical analyses through a graphical user
interface.

The input to SEA (Fig. 3) is a binary of an application pro-
gram that, for example, has been written in C. The “Analyzer”
is further fed with instruction traces that contain timing infor-
mation. For that purpose, either an Instruction Set Simula-
tor (ISS) or a HDL simulator can be used. The Analyzer ac-
cesses the power models capturing instruction sequences, data
dependencies and pipeline effects. These models are input
from the database. The database is directly generated (man-
ually supported in a one-time effort; indicated by the dashed
arrows) from the synthesizable RTL core in conjunction with
a energy/power estimation tool (we used Sente). A graphical
user interface allows to represent various power/energy related
graphical representations along with statistics. The reference
flow is Sente’s Peak/Watt Watcher that is fed by the Model-
Sim simulator with stimuli generated by the execution of an
application written in C.

VI. EXPERIMENTS AND RESULTS

To verify our power/energy estimation tool suite, we have
constructed the power database for the MicroSparcIIep core.
We then applied our SEA framework to diverse applications
that are written in C. SEA can operate in various modes and
thereby aid the system designer in different design stages. The
modes are described in the following.

Power/Energy Min/Max Mode: In this mode, SEA com-
putes the minimum and maximum energy consumption during
every cycle. It calculates the minimum and maximum bounds,
assuming that the same program might run on different data.
Therefore, the system designer gets a reliable energy estimate
even when the data the application will run on is not available
yet. A typical plot for this mode can be seen in Fig. 4. It
shows the energy bounds“min” and“max” , the predicted en-
ergy“pred” and“actual” which is the comparison to a com-
mercial tool (Sente [24]). As can be seen the actual energy
values lie always within the min/max range. Moreover, even
the predicted graph is very close to the“actual” derived from
Sente. As we will discuss later, our tool is several orders of
magnitude faster than the Sente tool.

Fig. 5 shows a plot of the power consumption with respect
to clock cycles. This mode is useful when the designer wants

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

min
max
pred
actual

En
er

gy

[x20 nJ]

Time [Cycles]

Fig. 4. Energy estimation for“key3” using SEA

300 320 340 360 380 400 520
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

actual
min
max
pred

[W]

P
ow

er

Time [Cycles]

Fig. 5. Power estimation for“key3” in a certain time window using SEA

to identify power-critical windows in the execution of an ap-
plication as it shows the power consumption cycle by cycle.
It can also be used to optimize the software program in order
to adapt to the battery characteristics or even to detect power-
related problem areas in the hardware design. Here too, SEA
is compared to Sente and the results are close but the speed of
SEA is orders of magnitude faster.

Batch Mode: In this mode the SEA framework gives the
energy estimation of a program without a graphical interface.
This enables SEA to operate in batch mode as a tool that is
being invoked by other tools.

Discussion of Results:We compare the results obtained by
SEA with those obtained by the Sente tool suite [24] as the lat-
ter is a commercial tool providing the highest level of abstrac-
tion (RT level) for estimating power consumption. The com-
parisons are performed under following assumptions: Sente
and SEA were in the mode where per-cycle energy/power con-
sumption is estimated. Both tools assume that there is an in-
struction trace already available. Since instruction traces can
be generated by various tools (by an ISS or byModelsim, for
example) at various speeds, we have not included the time for
trace generation in our results, as we wanted to compare the
pure efficiency of the power/energy estimation.

The results are summarized in Tab. V. The most interesting
results are shown in the last three columns of the table where
the computation times are compared absolutely and in terms
of relative difference. Simulating a whole processor core with
the stimuli data for an application turned out to be very com-
putation intensive for the Sente tool: around 2k-3k simulated
cycles (col. 8) of an application running on the synthesizable
RTL of the MicroSparcIIep took between 7hrs and 15hrs for
the Sente tool. Our SEA framework estimated the power us-
ing exactly the same traces in less than a second resulting in
speed-ups of more than five orders of magnitude. However,
we need to put this performance improvement in the context
of the accuracy we achieved: The energy data estimated for
various applications using our SEA framework are shown in
columns 2, 3 and 4 (minimum, maximum and average). The
column named“Actual” is the reference energy consumption
achieved by Sente. The column“PE” shows the error in pre-
diction. It shows that our SEA framework is in all cases within
a 5% accuracy compared to Sente. However the per-cycle
power accuracy,“PCE” , is within 12% to 17%. This is the



TABLE V
FINAL RESULTS INCLUDING ENERGY/POWER DATA AND COMPUTATION TIME

Application Energy Data [uJ] PE [%] PCE [%] Simulated Sim Time
Program Min. Max. Avg. Actual Avg. Cycles Sente SEA Speed-up

“Bubble Sort” 40.69 51.87 46.53 47.67 2.40 13.15 2588 15.09 H 0.10 s 5.4x105

“Heap Sort” 33.10 41.04 37.47 37.59 0.31 12.27 2188 12.76 H 0.09 s 5.1x105

“Insertion Sort” 17.74 21.47 19.87 19.08 4.15 16.63 1188 06.93 H 0.04 s 6.2x105

“Key3” 30.37 36.36 33.94 32.64 3.96 10.70 2100 12.25 H 0.09 s 4.9x105

“3d-image” 35.18 42.14 39.29 37.25 5.48 11.66 2400 14.00 H 0.10 s 5.0x105

0

100000

200000

300000

400000

500000

600000

700000

"Bubble

Sort"

"Heap

Sort"

"Insertion

Sort"

"Key3" "3d-

image"

Application Programs

S
im

u
la

ti
o

n
S

p
ee

d
u

p

Fig. 6. Speed-up (i.e., “times faster” of our SEA framework compared to the
Sente tool).

toll we have to pay for our fast database oriented estimation
model. Fig. 6 summarizes the results in terms of how many
times faster our SEA framework estimates energy/power com-
pared to the Sente tool.

The comparison of our SEA framework to the Sente tool
has to be set in relation, though: the aim of Sente is to esti-
mate power ofany RTL design whereas SEA needs a sepa-
rate database for every new processor core. On the other hand,
SEA’s computation time is independent of the (RTL) complex-
ity of the processor since we estimate power/energy consump-
tion at instruction level. The higher abstraction level is even-
tually the reason for the high speed-up. The level of accuracy
we achieve, especially for average power/energy consumption,
makes SEA a reliable tool for a system designer.

VII. C ONCLUSIONS

In this paper, we have introduced a cycle-based, instruction-
level power/energy model and the SEA framework for fast
micro-architectural energy/power estimation. As opposed to
previous work in the field our estimation is for a highly op-
timized synthesizable RTL core which prohibits the usage of
module-based estimation approaches. Instead, our models
employ the notion of minimum/maximum energy/power con-
sumption and estimate depending on how much information
and certainty is available within a certain time window. Vari-
ous databases have been generated to accomplish this task. As
a result, our technique estimates around 5 orders of magnitude
faster compared to the Sente tool suite with an accuracy that
is within 5% for energy estimates and within 15% for power
estimates. Though the experiments shown here are all based
on the MicroSparcIIep processor core, the general techniques
we used are applicable to other cores as well.

REFERENCES

[1] C. Brandolese, W. Fornaciari, F. Salice and D. Scuito, “Energy
estimation for 32-bit microprocessors”,CODES2000, pp. 24-
33.

[2] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A framework
for architectural- power analysis and optimization”,ISCA2000,
pp. 83-94.

[3] D.C. Burger, T.M. Austin and S. Bennett, “Evaluating future mi-
croprocessors:The SimpleScalar Tool Set”,TR:1308, University
of Wisconsin-Madison, July 1996.

[4] G. Cai and C.H. Lim, “Architectural-level power/performance
optimization and dynamic power estimation”,Cool Chips Tuto-
rial colocated with MICRO32, Nov 1999.

[5] C. Chakrabarti and D. Gaitonde, “Instruction level power model
of microcontrollers”,ISCAS1999, vol.1, pp. 76-79.

[6] N. Chang, K. Kim and H.G. Lee, “Cycle-accurate energy
consumption measurement and analysis: Case study of the
ARM7TDMI”, ISLPED2000, pp.185-190.

[7] S. Ghiyasi and D. Grunwald, “A comparison of two architectural
power models”,PACS, ASPLOS-IX, Nov 2000.

[8] C-T. Hsieh and M. Pedram, “Microprocessor power analysis by
labeled simulation”,IEEE Trans. on Computer Aided Design,
Vol. 17. No. 11, Nov. 1998, pp. 1080-1089.

[9] R. Joseph and M. Martonosi, “Run-time power estimation in
high-performance microprocessors”,ISLPED 2001. pp. 135-
140.

[10] P. E. Landman and J. M. Rabaey, “Activity-sensitive architec-
tural power analysis”.IEEE Trans. on Computer-Aided Design
of ICAS, pp. 571-587, 1996.

[11] S. Lee, A. Ermedahl and S.L. Min, “An accurate instruction-
level energy consumption model for embedded RISC proces-
sors”,LCTES2001, pp. 1-10.

[12] M. Levy, “Processors measure up to the power challenge”,Arti-
cle in EDN, July 22, 1999, www.e-insite.net/ednmag.

[13] “MicroSPARC-IIep Users manual”, Sun Microsystems, April
1997.

[14] G. Qu, N. Kawabe, K. Usami and M. Potkonjak, “Function-
Level power estimation methodology for microprocessors”,
DAC 2000, pp. 810-813.

[15] J. T. Russell and M. F. Jacome, “Software power estimation
and optimization for high performance, 32-bit embedded pro-
cessors”,ICCD 1998, pp. 328-333.

[16] A. Sama, M. Balakrishnan and JFM Theeuwen, “Speeding
up power estimation of embedded software”,ISLPED 2000,
pp.191-196.

[17] M. Sami, D. Sciuto, C.Silvano and V. Zaccaria, “Instruction-
level power estimation for embedded VLIW cores”,CODES
2000, pp.34-38.

[18] D. Sarta, D. Trifone and G. Ascia, “A data dependent approach
to instruction level power estimation”,VOLTA 1999, pp.182-
190.

[19] T. Simunic, L. Benini and G. De Micheli, “Cycle-accurate sim-
ulation of energy consumption in embedded systems”,DAC
1999, pp.867-872.

[20] A. Sinha, and A.P. Chandrakasan, “JouleTrack - A web based
tool for software energy profiling”,DAC2001, pp. 220-225.

[21] P. Stanley-Marbell and M.S. Hsiao,“Fast, flexible, cycle-
accurate energy estimation”,ISLPED2001, pp. 141-146.

[22] V. Tiwari, S. Malik, A. Wolfe and M.T. Lee, “Instruction level
power analysis and optimization of software”,Journal of VLSI
signal processing, 1996, pp. 1-18.

[23] W. Ye, N. Vijayakrishnan, M. Kandemir and M.J. Irwin, “The
design and use of SimplePower: A cycle accurate energy esti-
mation tool”,DAC 2000, pp340-345.

[24] www.sequencedesign.com
[25] http://www.sun.com/microelectronics/communitysource


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




