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ABSTRACT

Memory is a scarce resource in many embedded systems. $acrea
ing memory often increases packaging and cooling costs, air
energy consumption. This paper presents CRAMES, an efficien
software-based RAM compression technique for embedded sys
tems. The goal of CRAMES is to dramatically increase effecti
memory capacity without hardware design changes, whilenmai
taining high performance and low energy consumption. Toexeh
this goal, CRAMES takes advantage of an operating systeim’s v
tual memory infrastructure by storing swapped-out pagesom-
pressed format. It dynamically adjusts the size of the cesged
RAM area, protecting applications capable of running withib
from performance or energy consumption penalties. In sufdit
to compressing working data sets, CRAMES also enablesesffici
in-RAM filesystem compression, thereby further increa

capacity. CRAMES was implemented as a loadable module &r th
Linux kernel and evaluated on a battery-powered embeddsdray
Experimental results indicate that CRAMES is capable obting

the amount of RAM available to applications. Execution tiams
energy consumption for a broad range of examples incredge on
slightly, by averages of 0.35% and 4.79%. In addition, thiskwv
identifies the software-based compression algorithmsateanost
appropriate for low-power embedded systems.

Categories and Subject Descriptors

D.4.2 [Storage Managementt Virtual memory; C.3 Bpecial Pur-
pose and Application Based SystenjsReal-time and embedded
systems

General Terms

Design, management, performance

Keywords

Embedded system, memory, compression

1. Introduction and Motivation

Modern embedded systems, e.g., personal digital assgRDAS)

and mobile phones, are growing increasingly complex. Ireord
to support applications such as 3-D games, secure Intecness,
email, music, and digital photography, the memory requaeis

of embedded systems have grown at a much faster rate than wa
originally anticipated by their designers. For examples tbtal
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RAM and flash memory requirements for applications in the mo-
bile phone market are doubling or tripling each year [1].haligh
memory price has historically dropped with time, adding rogm
frequently results in increased packaging and coolingscaste,
and energy consumption. For example, the HP iPAQ hx2755 PDA
has a price 20% higher than its predecessor, the iPAQ hx241tB.

the exception of a slight increase in CPU frequency (520 Mbtz f
hx2415 and 624 MHz for hx2755), hx2755 differs from hx2415
only by making 2.2 times as much memory available to the @Wer [
In addition, as embedded systems support new applicatibes,
working data sets often increase in size, exceeding ofigisik
mates of memory requirements. Redesigning hardware isaiot d
sirable as it may substantially increase time-to-markelt @esign
costs.

We propose a new software-based RAM compression technique,
named CRAMES, that increases effective memory capacitiy-wit
out adding physical memory. RAM compression for embedded
systems is a complex problem that raises several questidoss
the technique allow existing applications to execute withgerfor-
mance and energy consumption penalties? Can new appfisatio
with working data sets that were originally too large for pical
memory be automatically made to execute smoothly? What com-
pression algorithm should be used, and when should conipness
and decompression be performed? How should the compressed
RAM area be managed to minimize memory overhead? How should
the technique be evaluated for use in embedded systems?

This paper answers these questions and evaluates theyfalit
CRAMES. To minimize the performance and energy consumption
impact, CRAMES takes advantage of the operating system (OS)
virtual memory swapping mechanism to decide which pagesrte ¢
press and when to compress them. Multiple compression tech-
nigues and memory allocation methods were experimentadlis e
uated; the most promising were selected. CRAMES dynaryicall
adjusts the size of the compressed area during operati@ml loes
the amount of memory required, so that applications capslslen-
ning without memory compression do not suffer from perfanoea
or energy consumption penalties as a result of its use. litiaad
to data set compression, CRAMES may also be used for in-RAM
filesystem compression, thereby further expanding systAm.R

CRAMES has been implemented as a loadable Linux kernel mod-
ule for maximum portability and modularity. Note that thehe
nique can easily be ported to other modern OSs. The module was
evaluated on a battery-powered PDA running an embeddeibrers
of Linux called Embedix. This embedded system’s architects
similar to that of modern smart phones. CRAMES requires the
presence of an MMU. However, no other special-purpose hanelw
is required. MMUs are becoming increasingly common in hegia-
embedded systems. We evaluated our technique using wahrkn
batch applications as well as interactive applicationf graphical
user interfaces (GUIs). A PDA user input monitoring and pkgk
system was designed to support the creation of reproduicitde
active GUI benchmarks. Our results show that CRAMES is dapab
of dramatically increasing the memory capacity with minimer-
formance and energy consumption costs.



The rest of this paper is organized as follows. Section 2 sasmm
rizes the contributions of related work. Section 3 desesribe pro-
posed memory compression technique and elaborates orattee tr
offs involved in the design of CRAMES. Important design prin
ciples are proposed for software-based RAM compressidn- tec
nigues. Section 4 discusses the implementation of CRAMES as
a Linux kernel module. Section 5 describes the experimesatal
up, workloads, and experimental results in detail. Fin&Bbction 6
concludes the paper.

2. Related Work

Early techniques for reducing the RAM requirements of endieeld
systems were mostly hardware-based, i.e., they were ingpited
with, and relied on, special-purpose hardwa@ade compression
techniques [3,4] store instructions in compressed format de-
compress them during execution. In these techniques, @ssipn

is usually done off-line and can be slow, while decompressso
done during execution by special hardware and must be vety fa
Main memory compressidechniques [5,6] insert a hardware com-
pression/decompression unit between the cache and RAMseThe
approaches may reduce embedded system RAM requirements an
power consumption. However, they require changes to therund
lying hardware and thus cannot be easily incorporated xigting
embedded systems.

Most previous work on software-based memory compressitn fa
into two main categories: compressed caching and swap esnpr
sion. Both have the main goal of improving system perforreanc
and target general-purpose systems with hard diSkampressed
caching[7-11] was proposed by a number of researchers to simul-
taneously handle both code memory compression and datampemo
compression. It improves system performance by decredbmg
number of page faults serviced by hard disks, which have much
longer access times than RANwap Compressiofi2—-15] com-
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Figure 1: Swapping between uncompressed and compressed RAM

3.1. Design Principles

he goal of CRAMES is to increase available memory with mini-
mal performance and energy penalties, and without requaddi-
tional hardware. We follow these principles to achieve tfual:
1. Carefully select and schedule pages for compressianguar-
antee correct operation, pages must be compressed whed-the a
dress space of active processes exceeds the main memoringvork
area.
2. Use a performance and energy efficient compression algorith
with low compression rattband memory overheadhis is crucial
to enable CRAMES to increase the amount of usable memory with
small performance and energy consumption penalties.
3. Organize the compressed area in non-uniform-size siitsce
sizes of compressed pages vary widely, efficiently distitiiguand

presses swapped pages and stores them in a cache. However, neocating data in the compressed memory area is challenging.

ther technique has been evaluated on embedded systemsiébr wh
power consumption and performance are critically impdrtan

In summary, despite the existence of memory compressidn tec
niques, few have seen use in commercial embedded systeprsfor
or more of the following reasons: (1) they assume off-lineneo
pression and thus cannot handle dynamic data memory, (2) the
require redesign of the target embedded system and thecaddlit
special-purpose hardware, or (3) their performance andygen-
sumption impacts have not been evaluated, or are unacteiab
typical disk-less embedded systems.

The work described in this article makes the following main-c
tributions: (1) unlike previous work, CRAMES handles boti o
line data memory compression and in-RAM filesystem compres-
sion; (2) it requires no special hardware or system redegign
the compression algorithm and memory allocation methodane
fully selected to minimize performance and energy consionpt
overheads; and (4) CRAMES targets disk-less embeddednsyste
In summary, it greatly increases the RAM available to embddd
systems with minimal performance and energy consumptistsco
(refer to Section 5).

3. CRAMES Design

CRAMES divides the RAM of an embedded system into two por-
tions: one containing compressed data pages and the otfteirco

ing uncompressed data pages as well as code pages. We call th

second area thmain memory working areaConsider a disk-less
embedded system in which the working data set of one memory-
intensive process (or several such processes) increaski ex-
ceeds system RAM. If no memory compression mechanism is used
the process may not proceed; there is no hard disk to whichyt m
swap out pages to provide more RAM. However, with CRAMES,

pages within the main memory working area are compressed and
moved to the compressed area so that the process may continue

running. When a compressed page is later required by a moces
the kernel quickly locates that page, decompresses it, ap@g<

it back to the main memory working area, allowing the prodess
continue executing.

4. Dynamically adjust the size of compressed aréBhe com-
pressed area must be large enough, when necessary, toerovid
applications with additional memory. However, it shouldysbut

of the way when applications do not require additional mgntor
avoid having a negative impact on performance and energy con
sumption.

5. Minimize the memory overhea@RAMES must minimize the
memory overhead of compression, fragmentation, and indecom-
pressed pages.

3.2. Design Overview

This section provides an overview of CRAMES. Three closely r
lated components are briefly introduced: OS virtual memegps
ping, block-based data compression, and kernel memonyegitm.

We then describe the design of CRAMES in accordance with the
design principles described in Section 3.1.

3.2.1. CRAMES and Virtual Memory Swapping

When a system with virtual memory support is low on memorg, th
least recently used data pages are swapped out from memory to
conventionally, hard disks. Swapping allows applicatjamssets

of applications, to execute even when physical memory isabt
ficient. CRAMES takes advantage of swapping to decide which
pages to compress and when to perform compression and decom-
gression; the compressed pages are then swapped out toia spec
compressed RAM deviceigure 1 illustrates the logical structure of
the swapping mechanism on the compressed RAM device. RAM is
divided into uncompressed areas (white) and compresseu @wa
eas (gray), each with non-uniform sizes. Pages are swapjed o
from uncompressed areas to compressed areas. Note ttaigher
no one-to-one correspondence between a compressed araa and
uncompressed area.

The compressed RAM device varies its memory usage over time
according to memory requirements. Unlike conventionalpsder
vices, which are typically disk partitions or files, the caoegsed

1Compression Ratio gives a measure of the compression achivone compression
algorithm on a page of data. It is compressed page size dilage@riginal page size.



Table 1: Memory overhead of evaluated compression algorithms
bzip2 Zlib [Z0  [ZRWI-A _RLE

7600KB  256KB  64KB  16KB 0

3700kB  44KB 0 16KB 0

Compression
Decompression

RAM device does not have a fixed size; instead, it is a linksd li
of compressed RAM areas (as shown in Figure 1). Whenever the
compressed RAM device is not large enough to handle a new writ
request, it requests more memory from the kernel. If suakss
allocated, the new chunk of memory is linked to the list ofsexi
ing compressed swap areas; otherwise, the combined datd set
active processes is too large even after compression. IReath
request to swap out a page is generated when physical memsry h
been nearly exhausted. If attempts to reserve a portionsiésy
memory for the compressed memory device were deferredthigtil
time, there would be no guarantee of receiving the requestad-
ory. Therefore, the compressed swap device starts with d,sma
predefined size but expands and contracts dynamically. thate
since a copy of a program’s code is kept in its executabledilde
pages need not be copied to the swap area or written backeaehe
cutable file because they may not be modified. Therefore,Ewgp

is not useful for code compression.

3.2.2. CRAMES and Block-based Data Compression

To ensure good performance for CRAMES, appropriate compres
sion algorithms must be identified and/or designed. Fotaipna
classical data compression is a mature area; a number ofthlge
exist that can effectively compress data blocks, which tende
small in size, e.g., 4KB, 8KB, or 16 KB. We evaluated existing
data compression algorithms that span a range of compnessio
tios and execution times: bzip2, zlib (with level 1, 9, andadét),
LZRW1-A, LZO [16], and RLE (Run Length Encoding).

Figure 2 illustrate the compression ratios and executioesiof
the evaluated algorithms and Table 1 gives their memoryirequ
ments. For these comparisons, the source file for compressio
a dump of pages swapped out from a workstation running SUSE
Linux 9.0, which was later divided into uniform-sized blad per-
form block-based compression. The compression ratiosdser
with the increase of block size because more similarity &lakle
within a larger block. Although bzip2 and zlib have the besne
pression ratios, their execution times are significanthgkr than
LZO, LZRW1-A, and RLE. In addition, the memory overheads of
bzip2 and zlib are high enough to starve applications in nemy
bedded systems. RLE offers fast compression and decongress
requires almost no memory except for a few indexing bytes has
a high compression ratio. LZO appears to be the best block com
pression algorithm for dynamic data compression in low-grosm-
bedded systems due to its good all-around performances H av
compression ratio, low working memory requirements for poes-
sion, no memory requirement for decompression [16], higih-co
pression speed, and high decompression speed. Therefoge, L
was chosen as the default compression algorithm in CRAMES.

3.2.3. CRAMES and Kernel Memory Allocation

In addition to scheduling compression and using an appatgpri
block compression algorithm, CRAMES must efficiently origan

the compressed swap device to enable fast compressed page a¢>

cess and minimal memory waste. More specifically, the falow
problems must be solved: (1) efficiently allocating or lingta
compressed page in the swap device, (2) mapping betweelrthe v
tual locations of uncompressed pages and actual datadosdti
the compressed swap device, and (3) maintaining a linkéaflis
free slots in the swap device that are coalesced when ajig@pr
These problems are closely related tokbkenel memory allocation
(KMA) problem. The memory management subsystem maintains
mappings from virtual pages to the actual location of dagahiysi-
cal memory, allowing it to satisfy requests for virtuallyntiguous
memory by allocating physically non-contiguous pages. ddia
tion, the kernel maintains a linked list of free pages. Pawes
removed from the free list when they are allocated, and metiito
the free list when they are released.

The CRAMES memory manager builds upon methods used in

KMA. In order to identify the most appropriate memory alleca
tion method for the RAM compression problem, the followinggfi
memory allocators were implemented and applied to requests
erated from the same swapped data file used to evaluate cempre
sion algorithms: resource map allocator (rm), power-af-freel-
ists (p2fl), McKusick-Karels allocator (mck2), buddy systébud),
and lazy buddy algorithm (Izbud) [17]. As observed for bldased
compression algorithms, there is a tradeoff between dlgorjual-
ity and performance, i.e., algorithms with excellent meyndiliza-
tion achieve it at the cost of speed and energy consumption.
Figure 3 illustrates the impact of chunk size on allocafie®/
time and total memory usage, including fragmentation amkbo
keeping overheads, for each of the five memory allocators. Fo
example,r m 4 KB stands for resource map allocator with a chunk
size of 4 KB. Recall that the CRAMES memory manager requests
memory from the kernel in linked chunks in order to dynamjcal
increase and decrease the size of the compressed memarpkrea
though a resource map requires the most time when the chzak si
is smaller than 16 KB, its execution time is as good as, if rettds
than, the other four allocators when the chunk size is |attgzn
16 KB. In addition, resource map always requires the leashme
ory from the kernel. Therefore, resource map was selecteleas
default allocation method for CRAMES. Note that for embetide
system memory sizes less than or equal to 16 KB, faster alloca
tors with good memory usage ratios may be considered, ég., t
McKusick-Karels allocator.

3.3. Using CRAMES with the Filesystem

The Sharp Zaurus SL-5600 provides an example of a widelgl-use
portable embedded system. It has 32 MB RAM, only 7.8 MB of
which are available for user applications and system b
processes. A significant portion (69% or 20 MB) of RAM is used
to create a battery-backed RAM disk, i.e., a common RAM dgvic
without compression, for the filesystem.

Although the design of compressed filesystems has beeredtudi
extensively in recent years, no solution exists for reaafabitable
RAM disks with arbitrary filesystem type. Cramfs [18] is adea
only compressed filesystem targeting embedded systemd.ifline
e2compr [19] patch provides transparent compression acahue
pression only for the second extended (ext2) filesystemS2f£0]
is a compressed, readable and writable filesystem, butatrisde
with flash memory rather than RAM disks. Using JFFS2 on RAM
disks would require an intermediate driver and introduceegn
essary performance overhead resulting from flash-speoifimal-
ing techniques. Therefore, it is desirable for a memory
sion technique to support the compression of RAM disks ueed f
filesystems in addition to the compression of data in main mem
ory. Although this is not its primary goal, CRAMES supportsre
pressed RAM disks containing any type of existing filesystem

4. CRAMES Implementation

CRAMES has been implemented and evaluated as a loadable mod-

ule for the Linux 2.4 kernel. The module is a special blockicked/
using system RAM. It may serve as both a swap device and a stor-
age area for filesystems. Although the block size for a swajree

is 4KB, i.e., the page size in Linux, the block size of filesyst
Storage areas may vary. This section describes the steuofua
CRAMES device and focuses on its use as a swap device.

4.1. CRAMES Request Handling

CRAMES is a special block device. It must therefore regigtiéhn
the kernel to make itself accessible. During registratiis,neces-

sary to report (1) block size and number of blotkise., capacity,
and (2) a request handling function, that the kernel callsrwthere
is a read/write request for this device. CRAMES reports din es
mated maximum capacity to the kernel, although its actushge
is usually substantially smaller. It enables on-the-flyadaimpres-
sion and decompression via its request handling procedinieh

2A block device is a random access device that stores andvesrilata in blocks.
3The kernel sets the block size of a block device to page sften(d KB) and adjusts
the number of blocks accordingly when the device is used asp device.
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Figure 2: (a) Compression ratios, (b) compression times, and (c) deeression times of evaluated algorithms
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consists of four steps: (1) compressing a block that is eritd the
device or decompressing a block that is read from the de{@yel-
locating memory for a compressed block or locating a congaeks
block with an index number, (3) managing the mapping tabid, a
(4) merging free slots when possible.

Request more
memory from
kernel

No

Data in a block device are always requested by their block in- Figure 4: Handling request in CRAMES device
dices, regardless of whether the device is compressed. (H&AM
creates the illusion that blocks are linearly ordered indegice’s e addr records the actual address of a block.
memory area and are equal in size. To convert block indices to e si ze keeps the compressed size of a block.
addresses in virtual memory, CRAMES maintaimsapping table Figure 4 illustrates the flow of CRAMES request handling pro-
which may be directly-mapped or hashed. In a direct-mapgiglét  cedure for a compressed swap device. Unlike a RAM device, a

each entry is indexed by its block number. In a hash tablekeéfje  gjven page need not always be placed at the same fixed offset. F
of each entl’y is a block number. The memory overhead of atdirec examp|e’ when the driver receives a reques[dad page 7’ it
mapped table is higher because it may maintain block indit&s  checks mapping table enttyl [ 7], gets the actual address from
are never used. However, searching in such a table is eXfreme aqdr field, checks theonpr essed field to determine whether the
fast. In CQntraSt, a_ha.sh table minimizes the memory OVdrbga page is Compressed and if it iS, gets the Compressed paMe
only keeping block indices that are actually accessed. Weuyéehe the si ze field. Page 7 is then decompressed and the request re-
search time is longer. When evaluating CRAMES on a Sharp Za- turns successfully. Handling write requests is more covagsid.

urus SL-5600 PDA (see Section 5) we used a direct-mappee tabl Wwhen the driver receives the requesttate to page 7, it first

because it is small enough (at most 16 KB) and fast. checks the mapping table entrl [ 7] to determine whether the
Regardless of the type of mapping table, the data field of each ysed field is 1. If so, the old page 7 may safely be freed. After this,
entry must contain the following information: . the driver compresses the new page 7, request that the CRAMES
e used indicates whether it is a valid swapped-out block. This memory manager allocate a slot of the compressed size foethie
field is espeCIaIIy important for CRAMES to decide whetheome page 7, and p|aces the Compressed page 7 into the memory regio
pressed block may be freed. allocated. In the Linux kernel, the first page of a swap deisce

e conpressed indicates whether a swapped-out block is in com- used to persistently store information about the swap arbare-
pressed format. When a block is not compressible or the com- fore, this page is hot compressed by CRAMES and is alwaygglac
pressed size exceeds the original block size, CRAMES abonts at the beginning of the device memory space. As a result,gn Fi
pression and stores the original block. This field is necgssa ure 4, page 0 need not be decompressed or compressed firstwhen
guarantee correctness, even though such cases are rare. is read or written.
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Figure 6: Compressed blocks in CRAMES device

4.2. CRAMES and RAM Disk Comparison

Figure 5 illustrates the logical structure and request hagadf a

RAM disk?. As shown in the figure, the virtually contiguous mem-
ory space in a RAM disk is divided into fixed-size blocks. Sithd
areas in the device memory represent occupied blocks ang whi
areas represent free blocks. Upon initialization, a RAM disks
from the kernel for a virtually contiguous memory region,igbhis
then divided into uniform fixed-size blocks. When the RAMkdis
receives a read request for a block, it first locates thatikblgceits
index and then copies the data in that block to the requetrbuf
When it receives a write request, it first locates the blolkntre-
places the data in that block with the data in the requesebuff
Figure 6 illustrates the logical structure and request liagaf
a CRAMES device. The memory space in a CRAMES device con-
sists of several virtually contiguous memory chunks. Eduim&
is divided into blocks with potentially different sizes. &fed areas
represent occupied blocks and white areas represent foe&sbl
Upon initialization, a CRAMES device requests a small aqunti
ous memory chunk in the kernel virtual memory space. It retjue
additional memory chunks as system memory requirements. gro
These compressed memory chunks are maintained in a lirdted li

Table 2: Timing, power, and energy for filesystem experiments

Benchmark Time (S) Power (W) Energy (J)
without/ w. CRAMES without / w. CRAMEY without/w. CRAMESY

mke2fs 0.0451 0.0454 158 1.48 0.0713 0.0670
cp small file 0.0509 0.0469 157 1.63 0.0802 0.0763
cp large file 0.1688 0.2339 1.50 1.43 0.2536 0.3346
rm small file 0.0456 0.0500 1.49 1.48 0.0678  0.0738
rm large file 0.0447 0.0455 1.50 1.49 0.0669 0.0677
pack tree 3.8130 4.9336 1.92 1.92 7.3134 9.4965
unpack 0.2761 0.3109 1.43 1.47 0.3937 0.4571
cp tree 0.4597 0.4555 1.71 1.39 0.7844 0.6327
rmtree 0.2991 0.3071 1.46 1.48 0.4368  0.4560
find 0.2968 0.2893 1.50 1.39 0.4465  0.4025

tions that are capable of running without data compressiimen a
CRAMES device receives a read request for a block, it lookshap
block index in its mapping table, locates the block, decasges it,
and copies the original data to the request buffer. Whercdives

a write request for a block, it locates the block, determinksther

the old block with the same index may be discarded, compsesse
the new block, and places it at a position decided by the CRBME
memory management system.

5. CRAMES Evaluation

This section presents energy consumption and performaege m
surements of applications running on a Sharp Zaurus SL-B63Y
with and without CRAMES. This battery-powered embedded sys
tem runs an embedded version of Linux called Embedix. It has a
400 MHz Intel XScale PXA250 processor, 32 MB of flash memory,
and 32 MB of RAM. We replaced the SL-5600's battery with an
Agilent E3611A direct current power supply. Measuremengsew
taken using a National Instruments 6034E data acquisitaard
attached to the PCI bus of a host workstation running Linust-C
rent was computed by measuring the voltage across a5W, 250 m
Ohmite Lo-Mite 15FR025 molded silicone wire element resigt
series with the power supply. This resistor was designeduoent
sensing applications.

5.1. Using CRAMES for Filesystem on Zaurus PDA

CRAMES was used to create a compressed RAM device for the
EXT2 filesystem on a Zaurus SL-5600 PDA. We compared the ex-
ecution time and energy consumption of this device with tfitihe
EXT2 filesystem on a common RAM disk and observed an average
compression ratio of 63% for the CRAMES device. In addition,
Table 2 illustrates that the increases in execution timeearatgy
consumption were small: on average 8.4% and 5.2%, respbctiv

5.2. Using CRAMES for Swapping on Zaurus

The benchmarks used to evaluate CRAMES contain four applica
tions from the Mediabench benchmark suite [21], one matiik m
tiplication program with different matrix sizes, ten commGUI
applications provided with Qtopia for Zaurus PDAs, and cbmb
nations of the above applications running simultaneoustyor-
der to consistently evaluate the behavior of an unmodified PD
and a PDA using CRAMES when running interactive applicatjon
we wrote software to monitor user input and repeat it witmide
tical timing characteristics. This technique replaces(tuftware)
touchscreen device with a named FIFO controlled by a proginaim
reads from the raw touchscreen. It stores user input evedttra-
ing information in a file. The contents of this file are lateplesed

to the touchscreen device in order to simulate identical inserac-
tion. This allows us to consistently reproduce user inpoabding

Each chunk need not be divided uniformly because the sizes of the consistent use of benchmarks containing GUlIs.

compressed blocks may differ due to the dependence of cempre
sion ratio on the specific data in each block. When all congas
blocks in a compressed chunk are free, CRAMES frees theeentir
chunk to the system. This allows the size of a CRAMES device to
dynamically increase and decrease during operation,iie@apt-

ing to the data memory requirements of currently runnindiegp
tions. This dynamic adjustment allows CRAMES to supports(se
of) applications that would not run without the technique pre-
vents performance and energy consumption penalties fdrcapp

4A RAM disk is an in-RAM block device that acts as if it is a hardid

Benchmarks were tested with and without CRAMES. They can
be grouped into three categories: (1) applications withllsmak-
ing data sets, i.e., adpcm, mpeg2, jpeg, Hancom Word, Hancom
Sheet, and calculator; (2) applications with working dats searly
as large as physical memory, but still (barely) able to rutheit
CRAMES, i.e., 500 by 500 matrix multiplication, Opera, Ptést,
and Quasar; and (3) applications with working data setsaogel
to fit into physical memory, i.e., simultaneously runninge@pand
Quasar as well as simultaneously running large matrix plidé-
tion and media player. Table 3 shows that, for the first catego
there are seldom any performance, power, or energy pehakie



Table 3: Timing, power, energy, and compression ratio for swapping xperiments
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Figure 7:  Performance and energy consumption impact of using
CRAMES for swapping

cause pages need not be swapped out. For the second category,

there are only minor penalties: on average 0.35% for pedanae,
3.26% for power consumption, and 4.79% for energy consumpti
The penalties result from the loss of the small amount of RAM
CRAMES reserves for the initial compressed area, which wigs o
inally available to the applications. For the third catggdtris not
possible to compare with the performance, power, and erafttine
original embedded system; the applications in this categionply
cannot run without using CRAMES to increase usable memory.

6. Conclusions

In this paper, we have presented a software-based RAM caempre
sion technique, named CRAMES, for use in low-power, disisle

embedded systems. CRAMES has been implemented as a Linux

kernel module and evaluated on a typical disk-less embesdyged
tem with a representative set of batch and GUI applicatidfs.
perimental results indicate that CRAMES is capable of dogbl
the amount of memory available to applications, with negle
performance and energy consumption penalties (on avera§eo0
and 4.79%, respectively). In addition, CRAMES support&iiM
compressed filesystems of any type. For experiments witBX1e2
filesystem, CRAMES increased available storage by at |e@tgt, 4
with small performance and energy consumption penaltiesaye

erage 8.4% and 5.2%, respectively). We conclude that CRAMES [21]

is an efficient software solution to the RAM compression feob
for embedded systems; it enables the execution of apmlitafor

- - Size (KB) Time (s) Power (W) Energy (J) Swap Comp
Application Description Data Code | without ~w. CRAMES | without =~ w. CRAMES | without w. CRAMES | (bytes) ratio
1 Adpcm MB: Speech compressioh 24 4 1.25 1.3T 0.38 0.49 0.54 0.79 0 n.a.
2 Mpeg2 MB: Video CODEC 416 48 71.74 71.71 1.16 1.17 82.95 84.10 0 n.a.
3 Jpeg MB: Image encoding 176 72 0.51 0.49 1.87 2.04 0.95 0.99 0 n.a.
4 Address Book GUI: Address book 32 8 30.63 30.61 151 1.59 46.14 48.72 0 n.a.
5 Hancom Word GUI: Office tool 32 8 32.97 32.98 1.54 1.55 50.70 51.26 0 n.a.
6 Hancom Sheet GUI: Office tool 32 8 28.85 28.75 1.69 1.72 48.77 49.55 0 na.
7 Calculator GUI: Calculator 32 8 33.19 3321 1.59 1.54 52.89 51.07 0 n.a.
8 Asteroids GUI: Fighting game 1004 64 30.79 30.81 1.72 1.79 53.01 55.28 0 n.a.
9 Snake GUI: Game 692 32 31.75 31.73 1.54 1.53 48.76 48.69 0 n.a.
10 Go GUI: Chess game 508 80 31.02 31.02 1.52 151 47.02 46.79 0 n.a.
11 Matrix (500) Matrix Multiplication 2948 4 52.53 55.06 2.18 2.18 114.69 119.82 129461 0.33
12 Opera Browser GUI: Web browser 1728 3972 | 29.65 29.65 1.78 1.69 52.86 50.16 454585 0.40
13 Primtest GUI: Java Multi-thread 2848 1364 27.77 27.79 2.06 2.11 57.30 58.52 497593 0.39
14 Quasar GUI: Java Multi-thread | 4192 1364 | 47.16 47.10 2,01 2.03 94.63 95.43 449224 0.43
15 Opera & Quasar GUI & GUI combination | 6104 5336 n.a. 47.12 n.a. 2.09 n.a. 98.68 992561 0.40
16 | Matrix (800) & Media Player| Batch & GUI combination 11600 168 n.a. 83.77 n.a. 3.27 n.a. 273.55 832642 0.34
which memory requirements exceed physical RAM. Moreower, i

will allow hardware design to be optimized for the typicalmmay
requirements of applications while also supporting (s€tsppli-
cations with larger data sets. We plan to publicly releasd_thux
kernel module implementation of CRAMES for academic and per
sonal use.
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